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Preface

What do combustion engines, fusion reactors, weather forecast, ocean flows,
our sun, and stellar explosions in outer space have in common? Of course, the
physics and the length and time scales are vastly different in all cases, but it is
also well known that in all of them, on some relevant length scales, the material
flows that govern the dynamical and/or secular evolution of the systems are
chaotic and often unpredictable: they are said to be turbulent.

In fact, the term “turbulence” is used for an enormous variety of phe-
nomena in very different fields, including geophysics, astrophysics, and en-
gineering. Unfortunately, these communities do not talk to each other too
often. Therefore, back in 2005, we organized a workshop on “Interdisci-
plinary Aspects of Turbulence” at the Ringberg Castle in the Bavarian
Alps, to discuss topics such as the basic concepts of turbulence, the differ-
ent approaches of modelling and simulations used in the various areas, and
also possible tests. This workshop was a great success and the proceedings
can be found on the Internet (www.mpa-garching.mpg.de/mpa/publications/
proceedings/proceedings-en.html) as well as pdf-files of several of the talks
presented (www.mpa-garching.mpg.de/hydro/Turbulence/).

However, we felt that it would be a good idea to ask a few of the partici-
pants to contribute to an edited book on this subject. Most of them agreed,
and the outcome is this Lecture Notes in Physics (LNP) volume. It covers
several subjects on which considerable progress was made during the last
decades, from questions concerning the very nature of turbulence to some
practical applications. After an introductory chapter an approach to relate
turbulence to statistical mechanics and nonlinear dynamics is presented, fol-
lowed by a discussion of turbulent convection in our Sun and in other stars.
Next, in the chapter “Turbulence in Astrophysical and Geophysical Flows”, a
basic introduction to turbulence in the context of geophysics and astrophysics
is provided, showing that the same methods, i.e. Reynolds stress models, can
be applied to a variety of problems successfully. The chapter “Turbulence
in the Lower Troposphere: Second-Order Closure and Mass-Flux Modelling
Frameworks” is devoted to the modeling of atmospheric turbulence in the
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VI Preface

context of numerical weather predictions and in the chapter “Magnetohy-
drodynamic Turbulence” the focus is on magnetohydrodynamic turbulence,
the application in mind being the design of magnetically confined plasmas
in fusion reactors. In contrast, the chapter “Turbulent Combustion in Ther-
monuclear Supernovae” deals with turbulent combustion in premixed flames
with an application taken again from astrophysics, namely thermonuclear
supernova explosions. Finally, in the chapter “One-Dimensional Turbulence
Stochastic Simulation of Multi-Scale Dynamics”, a new method is presented
to deal with the multi-scale character of turbulence by means of stochastical
processes which, besides its value on its own right, has the potential to serve
as a “subgrid-scale” model in large-scale numerical simulations.

We are grateful to our colleagues who contributed with enthusiasm to an
unusual volume and we hope that some of the readers will share our elation.

Garching, Germany Wolfgang Hillebrandt
Garching, Germany Friedrich Kupka
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An Introduction to Turbulence

W. Hillebrandt and F. Kupka

Max-Planck-Institut für Astrophysik, Garching, Germany
whillebrandt@mpa-garching.mpg.de

fkupka@mpa-garching.mpg.de

In fluid dynamics, turbulence is commonly defined as a flow regime charac-
terized by chaotic, stochastic property changes, such as rapid variation of
pressure and velocity in space and time. Turbulence sets in if the dimension-
less (scale-dependent) Reynolds number, measuring the relative importance
of inertial forces to viscous forces, exceeds a certain value, roughly 2300, as
found in experiments (see [5] for the case of pipe flows – lower values are
sometimes found for other types of flow such as plane Couette flow [26]).

Although, in a sense, the dynamics of fluid flows is well understood since
about 200 years, described by an innocently looking nonlinear partial differ-
ential equation, the Navier–Stokes equation, even giants of modern physics,
such as Werner Heisenberg, are quoted saying that the two major unsolved
problems of physics are the unification of quantum physics and gravity and
turbulence, and that they are more optimistic that the former will be solved
some day.

So, what is the problem with turbulence? The problem is that with increas-
ing Reynolds-number the flow patterns become so complicated on so many
different length scales that one has to resort to statistical methods to describe
the empirical findings. Kolmogorov’s ‘theory’ of fully developed homogeneous
turbulence (discussed in some detail in this chapter) is the best-known ex-
ample. However, Kolmogorov’s hypotheses only hold exactly in the limit of
infinite Reynolds number, and ‘a solution to the problem of turbulence’ would
be, roughy speaking, to derive them, for all kinds of flows, directly from the
Navier–Stokes equation. In fact, at present we are very far from being able to
do this, but several modern attempts to come closer to a solution, at least for
subclasses of complex fluid flows, are subject of this book.

The main emphasis of this chapter is to introduce the basic concepts of tur-
bulence. Before expounding on the meaning of turbulence we shall derive the
hydrodynamic equations from statistical mechanics, since statistical methods
are used in several chapters of this book and most derivations in textbooks
limit themselves to the traditional, continuum mechanics approach. Next, var-
ious aspects (including shortcomings) of Kolmogorov’s theory are discussed,

Hillebrandt, W., Kupka, F.: An Introduction to Turbulence. Lect. Notes Phys. 756, 1–20 (2009)
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2 W. Hillebrandt and F. Kupka

followed by an outline of more modern developments. We conclude with an
outlook on the other contributions to this book.

1 The Fundamentals of Turbulence

1.1 The Boltzmann and Maxwell–Boltzmann Equations

The equations governing the dynamics of fluids and dense gaseous systems
can be derived from classical statistical mechanics. To this end one considers
a classical mechanical system of N structureless particles without internal
degrees of freedom. For given initial conditions their motions are governed by
the Hamilton equations

∂qi

∂t
=

∂H

∂pi
,

∂pi

∂t
= −∂H

∂qi
i = 1, . . . , N, (1)

where qi = (q1, q2, q3) are the generalized coordinates and pi = (p1, p2, p3) the
generalized momenta of the particles, and H = H(q1, . . . , qN ,p1, . . . ,pN , t)
is the Hamiltonian of the system.

Of course, for large numbers of particles these equations of motions cannot
be solved directly, because the initial conditions are not known well enough
and/or the computational demands are prohibitive. The way out is to recourse
to a statistical description.

At any instant, the system of N particles under consideration can be rep-
resented by a point in the 6N -dimensional phase space. In terms of the multi-
particle distribution function F (q1, . . . , qN ,p1, . . . , pN , t), the probability of
finding the system in the volume element dΩ ≡ dq1 . . . dqNdp1 . . . dpN of
phase space is

F (q1, . . . , qN ,p1, . . . ,pN , t)dΩ (2)

and the phase–space integral is normalized to 1.
For a system of noninteracting particles F can be written as a product of

single-particle distribution functions fi(qi,pi, t), and for identical particles it
is simply

F (q1, . . . , qN ,p1, . . . ,pN , t) =
N∏

i=1

fi(qi,pi, t) = [f(q,p, t)]N . (3)

In order to derive evolution equations for the distribution functions, one
uses the fact that for a canonical ensemble the phase–space volume element
dΩ is constant in time which leads directly to the Liouville equation

dF
dt

≡ ∂F

∂t
+

3N∑

j=1

(
∂F

∂qj

∂qj

∂t
+

∂F

∂pj

∂pj

∂t

)
= 0 (4)
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An Introduction to Turbulence 3

which, in the case of noninteracting identical particles, reduces to the Vlasov
equation:

∂f

∂t
+

3∑

k=1

(
∂f

∂qk

∂qk

∂t
+

∂f

∂pk

∂pk

∂t

)
= 0. (5)

With increasing density, collisions between particles can no longer be ig-
nored. Under the assumption of only two-body collisions (which is a fair
approximation for short-range interactions and “moderate” densities) and
molecular chaos, one can integrate the Liouville equation successively over
the coordinates of the N -particle distribution function building up a hier-
archy of integro-differential equations, commonly called the BBGKY (Born,
Bogoljubov, Green, Kirwood, Yvon) hierarchy [3, 22]. For example, integrat-
ing over all-but-one particle coordinates and momenta one gets

dF(1)(q1,u1, t)
dt

≡
∂F(1)

∂t
+ u1

∂F(1)

∂q1
+ b

∂F(1)

∂u1
(6)

=
1
m1

∫
∂Ψ(q1, q2)

∂q1

∂

∂u1
F(2)(q1, q2,u1,u2, t) dq2 du2 .

where F(1)(q1,p1, t) is the probability to find a particle at (q1,p1), and we
have used for the acceleration

1
m

dp

dt
≡ du

dt
= −

∑

j

1
mj

∂Ψ

∂qj
+ b. (7)

Here Ψ(qi, qj) is the interaction potential between particles i and j, u the
velocity, and b the accelerations caused by external forces.

In Eq. (7) the two-particle function F(2)(q1, q2,u1,u2, t) appears as a new
unknown for which by integrating the Liouville equation over (N −2) particle
coordinates and momenta one obtains the next-order equation with a new
unknown function F(3), and so on. Because this system of equations cannot be
solved in closed form, the BBGKY-hierarchy has to be truncated or “closed”,
e.g., by making certain assumptions about F(i) at a certain order.

Under the additional assumption that F(1) is constant during collisions
and for identical particles the Boltzmann equation is obtained which reads

∂f

∂t
+ u gradqf −m gradqΦ gradpf =

[
∂f

∂t

]

c

(8)

or
∂f

∂t
+ u gradqf − gradqΦ graduf =

[
∂f

∂t

]

c

. (9)

Here, Φ is an external potential (such as gravity) and gradq stands for(
∂

∂q1
, ∂

∂q2
, ∂

∂q3

)
, etc. The collision term [∂f

∂t ]c describes the changes of the
single-particle distribution function caused by collisions in a statistical way
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4 W. Hillebrandt and F. Kupka

and represents irreversible processes such as viscosity and diffusion. It is this
term which makes the otherwise linear Boltzmann equation difficult to solve
and it is the main problem when deriving macroscopic equations from the
kinematic ones.

The next step towards hydrodynamics is to derive macroscopic equations
by appropriately averaging the Boltzmann equation. The standard way to-
wards this goal is to define macroscopic quantities as velocity moments of the
distribution function, the r-th moment being

〈
Θ(r)

〉
≡ 1

n

∫
Θ(r) f dp , (10)

with
Θ(τ) ≡ muτ τ = 0, 1, 2, . . . (11)

and the mean particle-number density n is defined as

n ≡
∫

f dp (12)

for which the identity

〈nΘ〉 =
∫
nΘf dp

n
=
∫

Θf dp = n 〈Θ〉 (13)

holds.
The first three moments, τ = 0, 1, and 2 in Eq. (11), are of particular

importance because of their direct physical meaning. They read

ρ =
∫

mf(q,p, t) dp (14)

ρv =
∫

mu f(q,p, t) dp (15)

ρε =
∫

m

2
|w|2f(q,p, t) dp. (16)

Here ρ and ρv are the density and the momentum density, respectively,
and ρ = mn. In order to get Eq. (16) we have introduced w as the difference
between the mean velocity v and the velocity u of a particle, i.e., w is the
(statistical) velocity fluctuation due to thermal motions and, thus, ρε is the
internal (or thermal) energy density.

Next the Boltzmann equation (Eq. 8) is multiplied by Θ(r) and integrated
over momentum space which gives
∫

Θ(r)

[
∂f

∂t
+ u gradqf − gradqΦ graduf

]
dp =

∫ [
∂f

∂t

]

c

Θ(r) dp. (17)

Since Θ(r) does not depend on q and t explicitly, Eq. (17) can be rewritten
in a more convenient way as
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An Introduction to Turbulence 5

∂

∂t

∫
Θ(r)f dp +

∫
u gradq(Θ

(r)f) dp −
∫

Θ(r)gradq Φ graduf dp

=
∫ [

∂f

∂t

]

c

Θ(r) dp (18)

which after averaging and some algebraic manipulations, making use of
Eqs. (10) and (13), transforms into the Maxwell–Boltzmann (transport) equa-
tion for the moment Θ(r):

∂

∂t

〈
nΘ(r)

〉
+ divq

〈
nΘ(r)u

〉
+ gradqΦ

〈
n graduΘ

(r)
〉

=
∫ [

∂f

∂t

]

c

Θ(r)dp. (19)

Some general properties of Eq. (19) are worth to be mentioned. Firstly,
the right-hand side is identical to zero, if Θ(r) (or any linear combination of
the Θ(r)’s) is conserved in collisions. Secondly, in the nonrelativistic limit and
for elastic collisions mediated by short-range forces there exist exactly five
conserved quantities: the mass m, the three components of momentum mu,
and the kinetic energy 1

2m|u|2.
As before, the Maxwell–Boltzmann equations are a hierarchical system

of equations because the collision term is not simply a function of the r-th
moment, and again, to solve them closure conditions have to be invented. For
a discussion of the physics of the equations derived in this and the following
subsection we refer to [10, 23]. A more general treatment can be found in [18].

1.2 The Equations of Hydrodynamics

In deriving the Maxwell–Boltzmann equations, we have assumed that it makes
sense to perform averages in momentum space, and the necessary conditions
were stated explicitly. This allowed us to introduce macroscopic quantities
such as the density or the energy density and to separate the forces between
particles into short-range ones, written as a collision term, and long-range
forces, put in explicitly as an external potential Φ. In physical applications,
Φ could be the gravitational or the Coulomb potential and would have to be
determined from some field equation.

The derivation of the hydrodynamic equations is now straight-forward.
They are obtained from the Maxwell–Boltzmann equations by taking the first
three moments and by introducing an equation of state for closure. Moreover,
we will use the fact that mass and momentum are conserved quantities and,
hence, the corresponding collision terms vanish.

Thus, the zeroth moment is simply Θ(0) = m and the corresponding mo-
ment equation, known as the equation of mass conservation or the continuity
equation, reads

∂

∂t
〈nm〉 + div 〈nmu〉 = 0, (20)
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6 W. Hillebrandt and F. Kupka

or, with nm = ρ =
∫
mf dp in a more convenient form:

∂ρ

∂t
+ div (ρv) = 0. (21)

The first moment is Θ(1) = mu and with u = v − w and 〈w〉 = 0 the
corresponding moment equation follows as

∂

∂t
(ρv) + div [ρ 〈u ⊗ u〉] + ρ gradΦ = 0, (22)

where u⊗u is the dyadic product of u with itself, for which because of 〈w〉 = 0
the relation

〈u ⊗ u〉 = 〈v ⊗ v〉 + 〈w ⊗ w〉 (23)

holds. Therefore one can rewrite Eq. (22) as

∂

∂t
(ρv) + div [ρ(v ⊗ v)] + divΠ = −ρ gradΦ (24)

which is the standard form of the Navier–Stokes equation, the equation of
motion of fluid dynamics. The pressure tensor Π appearing in Eq. (24) is
defined as Π ≡ ρ (w ⊗ w) and is commonly rewritten as

Π = p I − π, (25)

with I being the unit tensor, p ≡ 1
3 ρ
〈
|w|2

〉
the isotropic pressure, and π ≡

ρ
〈

1
3 |w|2I − w ⊗ w

〉
the (tensor) viscosity.

For an ideal gas or fluid the viscosity vanishes and the Navier–Stokes
equation becomes

∂

∂t
(ρv) + div [ρ(v ⊗ v)] + grad p = −ρ gradΦ, (26)

known as the Euler equation, which with the help of Eq. (21) is often written
as

∂v

∂t
+ (v grad)v +

1
ρ
grad p = −gradΦ. (27)

The Euler equation is a hyperbolic non-linear partial differential equation.
The non-linearity enters via the (v grad)v term, and this term is responsible
for turbulence to occur, as we shall see later.

Finally, the moment equation for the second moment Θ(2) = 1
2m|u|2 gives

us a conservation law for the energy density. Note that Θ(2) is the total en-
ergy of a particle and therefore

〈
nΘ(2)

〉
=
[

ρ
2

〈
|w + v|2

〉]
is the total energy

density, i.e., the sum of kinetic and thermal energy.
Its change with time is given by

∂

∂t

〈
nΘ(2)

〉
=

∂

∂t

[ρ
2
〈
|w + v|2

〉]
=

∂

∂t

[ρ
2
|v|2 +

ρ

2
< |w|2 >

]
(28)
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An Introduction to Turbulence 7

and the second term of the Maxwell–Boltzmann equation (Eq. (19)) reads

div
〈
nΘ(2)u

〉
=
∑

i

∂

∂xi

⎡

⎣ρ
2

∑

j

〈
u2

jui

〉
⎤

⎦ (29)

which after some lengthy manipulations can be written as

div
〈
nΘ(2)u

〉
= (30)

∑

i

∂

∂xi

⎧
⎨

⎩
ρ

2

⎡

⎣|v|2vi + vi

〈
|w|2

〉
+ 2

∑

j

vj 〈wiwj〉 +
〈
wi|w|2

〉
⎤

⎦

⎫
⎬

⎭ .

With the definitions ε ≡ 1
2

〈
|w|2

〉
(internal specific energy) and h ≡

ρ
〈
w 1

2 |w|2
〉

(energy flux by heat conduction) one obtains the energy equation

∂

∂t
(ρE) + div [(ρE + p)v] + div h − div(πv) = −ρv gradΦ (31)

where we have used E ≡ 1
2 |v|2+ε as an expression for the total specific energy

density (in units of energy per mass). For adiabatic motions of an ideal fluid
without external forces (or gravity) Eq. (31) reduces to

∂

∂t
(ρE) + div [(ρE + p)v] = 0 (32)

or, in terms of specific entropy (entropy per mass) S,

∂ρS

∂t
+ div(ρSv) = 0 . (33)

Together with an equation of state, p = p(ρ,E), and expressions for the
heat flux and the viscosity tensor the system of equations (21), (24), and (31)
is closed. If the diffusion approximation holds (see also [15]), a possible choice
for h is the phenomenological ansatz

h = −κ gradT , (34)

with the heat conduction coefficient κ. The viscosity tensor reads [15]

πik = η

(
∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik div v

)
+ ζδikdiv v , (35)

where η and ζ are the molecular and the bulk viscosity coefficients, respec-
tively. This linear dependence of πik on v holds for a Newtonian fluid [1, 16].
For emulsions or fluids of long-chained molecules the generation of internal
forces through shear and compression can be non-linear. However, for the ba-
sic properties of turbulent flows and their statistical treatment, which are of
interest in this volume, such peculiarities are less important.
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8 W. Hillebrandt and F. Kupka

1.3 Kolmogorov’s Theory of Fully Developed
Homogeneous Turbulence

There are many cases in daily life where one can observe chaotic flows of fluids
or gases, with rapid stochastic variation of velocity and pressure, properties
we have used to characterize turbulence in the introduction. Boiling water in
a pot is an example, the jet flow from a nozzle into a quiescent environment
is another one, or terrestrial atmospheric circulations, or sun spots.

In order to show why some fluid flows are laminar and others are turbulent,
we rewrite the Navier–Stokes equation (Eq. 24) slightly:

∂

∂t
(ρv) = −∇ (T + π) + F, (36)

where now T = Tij = pδij +ρvivj is the stress tensor with isotropic pressure
p, F = − ρ gradΦ is a vector describing external forces, and π, as before, is
the viscosity tensor which is zero for ideal fluids. For an “incompressible” fluid,
defined through div v = 0, in physical applications this means that pressure
and density are approximately constant over a characteristic length scale of
the fluid (which is a fair approximation for most low Mach-number flows, for
which |v|/cs � 1 and cs is the speed of sound in the fluid, which is obtained
from the equation of state p = p(ρ,E)). In that case and without external
forces Eq. (36) reduces to

ρ
∂v

∂t
+ ρ(v grad)v + div π = 0 (37)

and because of Eq. (35), with div v = 0, the viscosity is given by

πik = νρ

(
∂vi

∂xk
+

∂vk

∂xi

)
(38)

where we have introduced the kinematic viscosity as ν := η/ρ.
As can be seen from Eq. (37), two terms regulate the velocity change of

the fluid. The first term is the inertia of the fluid given by the extremely
non-linear expression ρ(vgrad)v and the second is the dissipation term divπ
which is linear in v. If the kinematic viscosity is high and/or the characteristic
length scale is small, the inertial term has little influence on the fluid which,
consequently, will not show the non-linear patterns of chaotic motions. In
contrast, if the viscosity is low and/or the characteristic length scales are
large, the non-linear term dominates over dissipation and the motion can
become turbulent. One should note, however, that for any given value of the
viscosity there exist length scales for which a fluid flow is likely to become
turbulent. Therefore, the phenomenon of turbulence is related to properties
of the flow rather than those of the fluid.

An example of a flow which changes its characteristics depending on length
scales involved is convection. We shall discuss it a bit more in detail to provide
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An Introduction to Turbulence 9

an illustration of the importance of scales. In laboratory fluids as well as in
stars at the onset of convection large plumes of hot material form and float
upwards while heavier cool surface material sinks downwards. This instability
is called the Rayleigh–Taylor (RT) instability and the growth rate of small
perturbations is given by the dispersion relation

ω2
RT = g k

ρ2 − ρ1

ρ2 + ρ1
, (39)

where g is the (local) gravitational acceleration and k the wave number of the
perturbation (see [4] for a general discussion).

However, due to the strong nonlinearity of the Navier–Stokes equation
(the v∇v term in particular), velocity fluctuations created on large scales
couple to all scales down to the viscous dissipation scale ηk, the Kolmogorov
scale [see Eq. (41)]. In between the RT scale L and ηk, there exists a region
where the hydrodynamic behaviour of the fluid is dominated by the inertial
term in the Navier–Stokes equation. It is therefore called the “inertial range”.
In this range, fluid properties should be statistically independent of both the
geometry on the RT scale and the microscopic viscosity. Therefore, one expects
a universal scaling of the velocity fluctuations in that range.

In such a cascade of turbulent velocity fluctuations, kinetic energy is trans-
ported from the large (RT) scales down to the Kolmogorov scale where it is
dissipated into heat. If the assumption is made that this transport is fully
described by its constant mean value q̄ (which is a reasonable assumption if
convective overturn times are short compared with the thermal evolution time
and if turbulence is homogeneous and isotropic, i.e, its statistical properties
are invariant under translation and rotation in space), a simple scaling law
follows, commonly called Kolmogorov scaling [12] (see also the independent
work of [19, 21, 29] and the refinements in [8, 9]):

v(l) = v(L)
(

l

L

)1/3

; ηk � l � L. (40)

Here, ηk is related to the Reynolds number defined as Re := v(L)L/ν by

ηk = L Re−3/4 (41)

and the energy flux through scale space is given by

q̄ =
v(l)3

l
=

v(L)3

L
=

ν v(ηk)2

(ηk)2
. (42)

(Here and in what follows v(l) are the mean (turbulent) velocity fluctuations
on length scale l.)

In stars such flows are highly turbulent always, mainly because of the huge
values of L and despite the rather “normal” viscosities. Reynolds numbers are
typically around 1012 or even 1014. This in turn means that turbulence spans
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10 W. Hillebrandt and F. Kupka

about 10 orders of magnitude in scale space. This is also the reason why, in
contrast to most laboratory flows, in astrophysics in general the Euler rather
than the Navier–Stokes equation is used to describe the flow.

One can state the assumptions which go into Kolmogorov’s scaling law a
bit more precisely. To that end we start by defining the probability function
for the velocity difference of two fluid elements separated by a distance l:

δv(l,x) = |v(x + l) − v(x)|, (43)

with the definition that v(l) = 〈δv(|l|)〉 is the space average of δv for fixed
length scale l.

Given this definition Kolmogorov’s first assumption is that for l � L
δv(l,x) is a function only of l = |l|, q̄, and ν. This essentially requires the
statistically averaged properties of the flow field to be independent of loca-
tion, x, and direction (dependence only on l), thus indirectly introducing the
requirements of homogeneity and isotropy for δv(l,x). His second assumption
is that for ηk � l, δv(l,x) is independent of ν. With both assumptions be-
ing fulfilled δv(l,x) can depend only on two variables: l and q̄. This uniquely
defines the functional form of the m-th moments of δv(l,x), the so-called
“structure functions”, which read

〈δv(l,x)m〉 ∝ (q̄l)m/3 . (44)

Setting m = 1 and using the definition of v(l) one obtains Eqs. (40) and
(42), or for the turbulent energy spectrum in wave number (k-space, with k
related to l through a Fourier transform with respect to l):

E(k) = Cq̄2/3k−5/3, (45)

with the Kolmogorov constant C, and by rewriting Eq. (42) as

q̄ = ν

[
v(L)(ηk/L)1/3

]2

η2
k

(46)

we recover for the viscous dissipation length ηk the relation

L

ηk
= Re3/4. (47)

1.4 Some Problems of Kolmogorov’s Theory

While Kolmogorov’s law, expressed by the first structure function, has been
confirmed by experiments as well as by numerical simulations for many dif-
ferent high Reynolds-number flows, for the scaling exponents ζm for higher
order moments,

〈δv(l,x)m〉 ∝ lζm , (48)
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An Introduction to Turbulence 11

deviations from the linear relationship ζm = m/3 of Eq. (40) are well known.
Experimentally, one finds ζm ≤ m/3, the deviations increasing with increasing
m. These findings indicate that the assumptions leading to Kolmogorov scaling
are not exactly fulfilled, which is not that surprising. In fact, if one abandons
the assumption that the energy flux from large to small scales is sufficiently
described by its mean value q̄, one can explain the experiments in an easy
way. Values ζm ≤ m/3 can be obtained if some rare but strong fluctuations
are present in the energy dissipation rate. This phenomenon is commonly
called “intermittency” [6, 7, 24], signalling a break-down of Kolmogorov’s
mean field theory for higher order structure functions where fluctuations of q
become increasingly more important.

Several modifications of Kolmogorov’s original theory have been suggested
to account for intermittency. The first attempt is due to Kolmogorov and
Oboukhov who independently invented the so-called “log-normal” model [13,
20]. Their hypothesis, often called “Kolmogorov’s third hypothesis”, is that
the logarithm of the energy dissipation rate q is a normal random variable
of variance equal to A(x, t) + μ log(L/l), where the term A(x, t) depends on
the characteristics of the large-scale motion and μ is a parameter, possibly a
universal constant. In addition, often the assumption is made that for log q
the following relation holds:

log q = −(μ/2) log(L/r) −A(x, t)/2. (49)

In more general terms, the ideas of homogeneous dissipation can be mod-
ified by calculating corrections δζm to the Kolmogorov ζm = m/3, for in-
stance, from approximate solutions of the Navier–Stokes equation or in so-
called multi-fractal models (see also [7]). Of course, these corrections have to
be scale dependent because, according to experimental findings, they are large
in the viscous subrange (small l), but small to zero in the inertial subrange
(intermediate l).

In general, for many practical applications the assumptions of fully de-
veloped homogenous (and isotropic) turbulence are not justified. Therefore,
further modifications of Kolmogorov’s theory have been investigated and some
of them are subject of this book.

2 Statistics and Simulations of Turbulent Flows

2.1 Length and Time Scales of Hydrodynamics

The averaging process discussed in Sect. 1 implicitly assumes that the time
scales t and the length scales l which are of interest for the dynamics of the flow
are well separated from the time and length scales relevant for the equation
of state p = p(ρ,E) used to close the system (21), (24), and (31). This limits
the region of applicability of these macroscopic equations, as it requires that
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12 W. Hillebrandt and F. Kupka

λ � l, τ � t, (50)

where λ and τ are the mean free path and the thermodynamical relaxation
time scale of the particles of which the fluid is made of. Averaging in physical
space as discussed in Sect. 1 (see also [10, 23]) can take place on length scales
λh and time scales τh for which

λ � λh � l, τ � τh � t. (51)

If the particles under consideration are atoms or molecules at standard
terrestrial temperature and pressure, the inequalities (51) are easily fulfilled.
For all hydrodynamical problems considered here, we assume that (51) holds
and hence the physical processes we consider operate on length scales l 
 λh

and on time scales t 
 τh. In particular, we also have that ηk 
 λh.

2.2 Statistical Interpretation of Solutions and Alternatives

From a mathematical point of view, one might simply attempt to solve
Eqs. (21), (24), and (31) as an initial-boundary value problem. To do so ρ(x, t),
v(x, t), and E(x, t) are specified at some time t0 for all locations x in a spatial
domain D, the volume (or area) considered in a given physical problem. In
addition to these initial conditions, the quantities ρ(x, t), v(x, t), and E(x, t)
are specified for all t > t0 on locations xb at the boundary ∂D of D. These
boundary conditions are required to obtain a unique solution on D and ensure
physical causality. Analytical solutions for this class of problems are known
only for few, special cases and proofs of existence or even uniqueness of solu-
tions for ρ(x, t), v(x, t), and E(x, t) have remained a difficult mathematical
challenge until today. The pragmatic approach to this challenge is the compu-
tation of approximate solutions. Exact solutions are assumed to exist because
of the sound physical and mathematical basis of the derivation of the hydrody-
namical equations and the successful comparisons of numerous approximate
solutions with experimental data.

Because of the nonlinearity of ρ(v grad)v the differences δρ = ρ1 − ρ2,
δv = v1−v2, and δE = E1−E2 between initially similar solutions (ρ1,v1, E1)
and (ρ2,v2, E2) can grow exponentially fast – and even faster – on time scales
t−t0, i.e. within a time interval of physical interest. This has two different im-
plications: the growth of arbitrarily small or finite-sized perturbations (which
is related to the onset of turbulence) and the limited long-term predictive
power of the hydrodynamical equations per se. An elementary introduction
into the stability analysis of turbulent flows is given in [15]. But even when we
are able to resolve all length scales from the size of the physical system (some
maximum distance within D) down to the Kolmogorov scale ηk in numerical
solutions of Eqs. (21), (24), and (31), the predictive power of such solutions
is limited to a finite interval t1 − t0, because initial conditions can only be
known with finite accuracy. This restriction is inevitable whenever initial data
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are taken from experiments or approximate solutions have to be compared to
experimental measurements. It is doomed to occur for any turbulent flow.
Thus, even direct numerical simulations of turbulent flows, approximate nu-
merical solutions to Eqs. (21), (24), and (31) which explicitly account for all
length scales in D down to ηk, are often the subject of a statistical inter-
pretation. This approach is by no means straightforward, since the general
hydrodynamical equations are dissipative, despite they are derived from the
conservative equations of motions for particles, (1), for which the concept of
phase space is indeed well understood. For a historical overview on the sub-
ject of statistical predictability in turbulent flows we refer to [25]. A short
introduction can also be found in [16].

As is illustrated, for instance, by the various contributions and references in
[17], the usefulness of statistical concepts for the study of turbulent flows has
been questioned in the scientific literature more than two decades ago. Much
of this criticism was in fact motivated by the limitations of simple Reynolds
stress models which only consider second order moments such as turbulent
kinetic energy and neglect the relevance of higher order correlations on the av-
eraged properties of the flow. We note that in deriving Reynolds stress models
products of the unaveraged hydrodynamical equations, i.e. (21), (24), and (31)
or some simplification thereof, are used to construct dynamical equations for
products of the basic dynamical variables ρ, v, and E (or some alternative, de-
pendent variables, see chapter “Turbulence in Astrophysical and Geophysical
Flows”). Ensemble averaging those equations yields the dynamical equations
of the moments of the hydrodynamical equations. This procedure in the end
yields an entire hierarchy of equations which is unclosed similar to the Boltz-
mann and Maxwell–Boltzmann equations discussed in Sect. 1.1. But contrary
to the latter a closure of the Reynolds-averaged moment equations is a much
more difficult task, since it requires knowledge on the macroscopic behaviour
of the flow. The most simple models are obtained, if that process is already
stopped at second order moments. This includes many of the phenomenolog-
ical models for turbulent flows such as mixing length theory. Information on
the large-scale structures, or actually on any structures in the flow, is lost in
such models, which is one reason for their limitations.

Until today such simple models are frequently used to parameterize prop-
erties of turbulent flows, although they have also been known for a long time
to fail in various applications (see [17]). However, the criticism went much
further: it was even argued that the very existence of large-scale coherent
structures prohibits the success of any statistical method. Coherent struc-
tures are commonly referred to as spatial regions that at a given time show
some organization with respect to any quantity related to the flow (cf. [16]).
This concept is not new at all in the study of turbulent flows: already five
decades ago an extensive description was given in [27] and also in some earlier
literature. One of the weak points behind those arguments used to discour-
age further use of statistical methods for studying or modelling turbulence
is that very often the coherent structures themselves behave in a manner
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14 W. Hillebrandt and F. Kupka

complex enough to justify statistical methods. As was already pointed out
in [17] other branches of physics have successfully used essentially statistical
methods to study phenomena which feature the equivalent of coherent struc-
tures, for example, the theory of critical phenomena in ferromagnets [14, 30].
It was concluded that one important message behind those results is the in-
dispensability of identifying the right quantities and objects on which to do
statistics.

During this debate many new concepts for the study of the physical na-
ture of turbulence have been proposed. In some cases hope was expressed
that they could even replace statistical methods. Research efforts were de-
voted to cellular automata and lattice gas dynamics, to chaos theory and a
dynamical systems approach to turbulence, and to more systematic studies of
coherent structures in turbulent flows as well as of vortex dynamics (see [17]
for some earlier references). Later on multifractal models based on wavelet
transforms have been introduced to analyse the scale-dependent properties
of turbulent flows (see, for instance, [11] and also [7]). The latter are in fact
more akin to a statistical approach. A lot of physical insight was gained from
these methods on how turbulence develops on the smallest scales. Research on
coherent structures and vortex dynamics has also been useful to further our
understanding of the dynamical properties of turbulent flows on large scales.
However, the study of complex physical systems that are the subject of astro-
and geophysical sciences, where the effects of turbulence can be observed on
length scales differing among each other by many orders of magnitude and
where complex boundary conditions interact with the flow, has seen much
less benefit from this kind of research. In fact, the greatest advancements in
these fields have definitely resulted from the dramatic refinement of numerical
simulations over the last two decades, partially because of the now available
‘raw computational power’, and also due to refinements in algorithmic solu-
tion procedures and the microphysics used as input data for such simulations.
The sheer amount of output data produced by hydrodynamical simulations
is one reason why statistical methods have not disappeared. Instead, they
have continued to be a standard tool for interpreting their results. Another
reason is related to the fact that for large physical systems not all the length
and time scales of interest can be included in the numerical scheme used to
perform the simulation. Thus, hybrid approaches are necessary. They deal
with separate ranges of length and time scales by different means, e.g., large
eddy simulations combined with mass flux–based sub-grid-scale parametriza-
tions. In principle, simulations could be performed separately for different
scale ranges, but in general this approach is prohibitive both due to com-
putational costs and conceptual difficulties such as coupling to larger scales
by means of complex boundary conditions or direct exchange between scales
not contained within the simulation. We note here that the one-dimensional
turbulence (ODT) methods discussed in the chapter “One-Dimensional Tur-
bulence Stochastic Simulation of Multi-scale Dynamics” address this problem
from a new point of view. In the meantime, Reynolds stress and mass flux

This copy belongs to 'acha04'



An Introduction to Turbulence 15

models have seen far more success when combined with numerical simulations
than many of the approaches originally proposed to replace such methods
altogether.

At the bottom line, no approach currently used for the study of turbulence
can deal with complex flows of large physical systems on its own. This might
explain why the past two decades have not seen new, alternative approaches
completely taking over the field, while refined Reynolds stress and mass flux
models have continued to be used widely in the parametrization of flow physics
operating on scales not explicitly accounted for in numerical simulations.

2.3 Ensembles, Averages, and Multiscale Problems

With this background in mind it is clear that the physical interpretation of
a quantity computed within a turbulence model or a numerical simulation
can be subtle and requires to specify the context of the computation. The
most important types of averages considered in the following chapters are
ensemble averages, volume averages, and (mass) flux averages. For the latter
the sign of a physical quantity at a given location is used to group different
regimes of the flow field together as part of the averaging process. Ensem-
ble averages assume the existence of long-term, quasi-stationary states or at
least the possibility to collect related, physically plausible initial conditions
together. In numerical simulations such ensembles are constructed from time
sequences under the assumption of a quasi-ergodic hypothesis. In that case
different locations in phase space are visited proportional to their realization
probabilities within the simulation time. We note here that ensemble averages
in Fourier space are actually performed for n-point correlation functions (cf.
[16]) and additional assumptions (such as homogeneity and isotropy) are in-
troduced to interpret them in terms of spectra in k-space. Volume averages
are a much more straightforward concept directly derived from the conser-
vation properties of the hydrodynamical equations (21), (24), and (31) and
the limited number of computational degrees of freedom (resolution, num-
ber of grid points in a numerical method, etc.) and the ensuing limitations
due to the size D of the domain to be modelled. Problems such as numeri-
cal weather prediction or certain types of combusting flows can challenge the
definition of such averages, since the scales at which physical processes take
place can change. This may even lead to the point at which parametriza-
tions or certain averaging concepts break down. Other multiscale flows are
more benign and allow robust definitions of averages useful in turbulence
modelling. We conclude here with a practical remark: both the notation
used for and the exact meaning of certain type of averages are not ‘nor-
malized’ by some generally accepted convention. Hence, a careful inspection
of definitions is always useful, even within the individual chapters of this
book.
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3 Summary

In the following we give a short summary of the different topics selected by
the authors of the remaining chapters of this book. The chapters have been
written in such a way that they can be read both successively as implied
by the sequence in this book and also selectively. Cross references between
chapters have been provided by the authors where appropriate.

The chapter “Nonextensive Statistical Mechanics and Nonlinear Dynam-
ics” discusses some recent developments in statistical mechanics and non-
linear dynamics which have become more and more interesting for research
on turbulence. It first introduces how Boltzmann–Gibbs statistics, the foun-
dation of classical statistical mechanics, and its famous Boltzmann–Gibbs
entropy functional should be generalized, in particular for physical systems
which are characterized by long-range interactions. The generalizations pre-
serve many key properties of the classical Boltzmann–Gibbs statistics and its
associated entropy functional, but abandon strict additivity. Classical statisti-
cal mechanics is recovered as a special case [2, 28]. The new distributions and
their associated entropy functionals require an additional physical quantity,
for instance the extensivity parameter q, to be determined from measurements.
The resulting framework is very useful to recover the distributions of velocity
fluctuations in a variety of turbulent flows, as shown from comparisons with
experimental data. This new methodology may hence provide us with a new
possibility to better understand the nature of probability density functions
of the dependent variables in turbulent flows. A well-founded theory of the
statistical distribution of those variables would provide a major step forward
towards a theory of turbulence which could replace current models.

The chapter “Turbulent Convection and Numerical Simulations in Solar
and Stellar Astrophysics” provides a discussion of turbulent convection in the
Sun and other stars as well as an introduction to the numerical simulation of
the latter. After discussing the applicability of the hydrodynamical approach
and motivating the astrophysical interest in this kind of work, solar convection
is chosen to explain various fallacies when dealing with large-scale turbulent
flows. An example is the laminar appearance of very high Reynolds-number
flows visualized by the structures observed at the solar surface. This exam-
ple is also used to demonstrate how straightforward measurement techniques
such as Doppler broadening of spectral lines can remain inconclusive in some
situations, while less direct ones (such as helioseismology) can indeed be deci-
sive. The focus is then given on numerical simulations and how they deal with
unresolved, small scales. The possible pitfalls in time integration of numerical
simulations and in the gathering of reliable ensemble averages is discussed.
Finite computational resources introduce compromises and impose the neces-
sity to choose the length and time scales accounted for in the simulation very
carefully. It is shown that grid refinement techniques can be useful to resolve
shear-driven turbulence while at the same time a large enough sample of co-
herent up- and down-flow structures can be included within the simulation
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volume. The influence of different types of boundary conditions is discussed
for the case of simulations of convection near the solar surface. It is shown
that the simulations can yield robust results on averaged properties of the
flow in the interior of a convective zone, even if artificial (closed, stress-free)
boundaries are used in the simulations, at the expense of not considering
a large domain close to the boundaries for interpretation. Finally, problems
related to turbulent mixing are discussed including some of the difficulties
caused by the finite parameter space accessible to even the most advanced
numerical simulations.

The chapter “Turbulence in Astrophysical and Geophysical Flows” first
provides a basic introduction into turbulence in astro- and geophysical flows.
It demonstrates how the same methods can be applied in the different fields
and explains step by step, how physically more and more complete Reynolds
stress models of turbulent flows can be built using the same methodology to
account for different physical effects. They include buoyancy driven turbulence
(turbulent convection) due to a gradient in temperature, in mean molecular
weight, or any combination thereof. The influence of rotation is discussed,
particularly on the transport of angular momentum and on mixing in stars.
The competing role of these different physical mechanisms in predictions of
(turbulent) mixing is discussed as well. This provides the background for the
discussion of a complete, state-of-the-art Reynolds stress model for turbulent
convection, which is shown to work well for convection in the dry (cloudless)
boundary layer found in the atmosphere of the Earth. A connection to convec-
tion models based on plumes is made. It demonstrates how coherent structures
can be accounted for in the Reynolds stress approach. Convection and mixing
in the ocean is then used as another example how the same methodology can
be used for the study of different physical systems. The chapter concludes with
some of the limitations introduced by how small-scale dissipation is treated
in all these models.

The chapter “Turbulence in the Lower Troposphere: Second-Order Closure
and Mass-Flux Modelling Frameworks” deals with the modelling of turbulence
in the lower atmosphere of the Earth in numerical weather prediction mod-
els. Such models have to deliver reliable predictions in a well-defined amount
of time on available resources. They are a good example for what kind of
compromises are chosen in simulations of turbulent flows when the goal is
reliability of the entire model using available, finite resources. More complete
physical models have to be discarded, if they do not blend well with other
parts of the model or are simply unaffordable (it is of very limited practical
use to receive a weather prediction for today not until tomorrow !). In such
modelling, small-scale turbulence is commonly dealt with by Reynolds stress
models, while mass flux models are used for the large-scale, coherent structures
created by convection. Both methods are hence introduced in detail and then
compared to each other. It is explained how the different physical mechanisms
(creation and destruction of turbulence, etc.) are accounted for. This compar-
ison is useful to translate between two types of averages: ensemble averaging
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and (mass) flux averaging. The differences between formally similar equations
obtained by these two approaches are discussed, as well as a number of sim-
plifications used in actual weather forecast programmes. Since weather is a
very non-linear, multi-scale phenomenon, a practical issue is that an increase
in computational power and thus in the number of length and time scales that
can be accounted for in a numerical model does not always lead to improve-
ments. This happens when a new “regime” is reached and a parametrization,
valid at course resolution, breaks down. Thus, the different components of a
forecast model should work together also when minimum and maximum scales
within the numerical simulation change. Hybrid schemes, even based on dif-
ferent types of averaging, are thus highly interesting for numerical weather
prediction, and the possibilities for such improved schemes are evaluated.

In the chapter “Magnetohydrodynamic Turbulence” the focus is changed
to magnetohydrodynamic (MHD) turbulence. The latter is of interest not
only to astrophysics, but also to the study of thermonuclear fusion for energy
production on Earth, since magnetic confinement has developed into the most
promising device to store hot plasmas for the reaction process. After introduc-
ing the dynamical equations, numerical simulations are used to study several
MHD problems. Differences between the case of two and three spatial dimen-
sions and between the magnetic and the non-magnetic case are explained.
The predictions of kinetic and magnetic energy distribution according to sev-
eral phenomenological models is probed with numerical simulations which
resolve all scales down to the dissipation range. Anisotropy and the macro-
scopic structure of MHD turbulence are investigated. Classical statistical tools
of turbulence modelling such as ensemble averaged two-point correlation func-
tions and structure functions are used to explain the results and complement
the visualizations.

The chapter “Turbulent Combustion in Thermonuclear Supernovae” dis-
cusses the subject of turbulent combustion in type Ia (thermonuclear) super-
novae. Again this problem is characterized by an enormous range of scales and
transitions between different flow regimes are expected to occur at least dur-
ing long-term simulation runs. Since the flame surface itself cannot possibly
be resolved by a simulation of an entire exploding star (not even, if the num-
ber of spatial dimensions is reduced to two or the computations are limited to
sectors assuming additional symmetries in the flow), a modelling concept is
required. This is taken from engineering flows (level-set technique). Then, an
introduction into sub-grid-scale modelling is given, since the turbulent flow
speed determines the rate of energy production in the complex and highly
wrinkled flame front. This difference is essentially due to a larger area of a
turbulent flame compared to a laminar one. The role of sub-grid-scale mod-
elling is illustrated by a number of simulations. Finally, a comparison with
astrophysical experimental data is made demonstrating that many of the ob-
served properties such as change of total visual brightness of supernovae as
a function of time and the production of 56Ni isotopes can be reproduced by
the hydrodynamical simulations.
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The chapter “One-Dimensional Turbulence Stochastic Simulation of Multi-
scale Dynamics” introduces a new approach for modelling the multi-scale
behaviour of turbulent flows that we deal with in numerical weather predic-
tion, turbulent combustion, and other phenomena described in the preceding
chapters. The stochastic simulation of turbulent processes proposed in the
‘ODT’ approach resolves some of the problems encountered in current large-
eddy simulations, where the unresolved, small scales are left to various kinds
of parametrizations. This puts limitations on the accuracy with which we
can predict the interchange of energy between resolved and unresolved scales
and is of major concern, whenever the flow is directly coupled to dissipa-
tion (or other unresolved) scale processes. The stochastic simulations in the
ODT framework share a number of concepts with lattice-gas hydrodynamics
and lattice Boltzmann models proposed earlier. In the end, the new approach
aims at performing a simulation of turbulent flow processes on length and
time scales not accounted for in the simulation. However, no assumptions are
made such as the volume-averaged flow quantities being equivalent to some
kind of ensemble average represented by mean quantities, with a functional
form claimed to be known in advance. Rather, such information is obtained
only during the numerical simulation and in this way provides a feedback be-
tween scales contained within the hydrodynamical simulations and those only
considered within the stochastic simulation. The advantage of this approach
is the much higher resolution which can be achieved in one dimension. Some
applications are presented which illustrate the potential of this method.
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1 Introduction

This chapter addresses turbulence and related questions from a statistical–
mechanical viewpoint. More precisely, as one of the many existing realizations
of nontrivial–nonlinear dynamical phenomena, which stands at the grounding
of statistical mechanics itself. Consistently, we shall first review some general
aspects of the statistical approach of mechanical phenomena, and only later
make a connection with turbulence, in Sect. 4.4.

A mechanical foundation of statistical mechanics from first principles
should essentially include, in one way or another, the following main steps.

(i) Adopt a microscopic dynamics. This dynamics is typically determinis-
tic, i.e. without any phenomenological noise or stochastic ingredient, so that
the foundation may be considered as from first principles. This dynamics could
be Newtonian, or quantum, or relativistic mechanics (or some other mechanics
to be found in future) of a many-body system composed by say N interact-
ing elements or fields. It could also be conservative- or dissipative-coupled
maps, or even cellular automata. Consistently, time t could be continuous
or discrete. The same is valid for space. The quantity which is defined in
space-time could itself be continuous or discrete. For example, in quantum
mechanics, the quantity is a complex continuous variable (the wave function)
defined in a continuous space-time. On the other extreme, we have cellular
automata, for which all three relevant variables—time, space and the quantity
therein defined—are discrete. In the case of a Newtonian mechanical system
of particles, we may think of N Dirac delta functions localized in continuous
spatial positions which depend on a continuous time.

Langevin-like equations (and associated Fokker–Planck-like equations) are
typically considered not microscopic, but mesoscopic instead. The reason, of
course, is the fact that they include at their very formulation, i.e. in an essen-
tial manner, some sort of noise. Consequently, they should not be used as a
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starting point if we desire the foundation of statistical mechanics to be from
first principles.

(ii) Then assume some set of initial conditions and let the system evolve
in time. These initial conditions are defined in the so-called phase space of the
microscopic configurations of the system, for example Gibbs’ Γ space for a
Newtonian N -particle system (the Γ space for point masses has 2dN dimen-
sions if the particles live in a d-dimensional space). These initial conditions
typically (but not necessarily) involve one or more constants of motion. For
example, if the system is a conservative Newtonian one of point masses, the
initial total energy and the initial total linear momentum (d dimensional vec-
tor) are such constants of motion. If the masses have some spatial extent, then
the total angular momentum is also a constant of motion. It is quite frequent
to use coordinates such that both total linear momentum and total angular
momentum vanish.

If the system consists of conservative-coupled maps, the initial hypervol-
ume of an ensemble of initial conditions near a given one is preserved through
time evolution. By the way, in physics, such coupled maps are frequently ob-
tained through Poincaré sections of Newtonian dynamical systems.

(iii) After some sufficiently long evolution time (which typically depends on
both N and the spatial range of the interactions), the system might approach
some stationary or quasi-stationary macroscopic state (when the system has
some kind of ageing, the expression quasi-stationary is preferable to station-
ary). In such a state, the various regions of phase space are being visited with
some probabilities. This set of probabilities either does not depend anymore
on time, or depends on it very slowly. More precisely, if it depends on time,
it does so on a scale much longer than the microscopic time scale. The vis-
ited regions of phase space, that we are referring to, typically correspond to
a partition of phase space with a degree of (coarse or fine) graining that we
adopt for specific purposes. These probabilities can be either insensitive or, on
the contrary, very sensitive to the ordering in which the t → ∞ (asymptotic)
and N → ∞ (thermodynamic) limits are taken. This can depend on various
things such as the range of the interactions, or whether the system is on the
ordered or on the disordered side of a continuous phase transition. Generically
speaking, the influence of the ordering of the t → ∞ and N → ∞ limits is
typically related to some kind of breakdown of symmetry .

The simplest dynamical situation is expected to occur for an isolated
many-body short-range-interacting classical Hamiltonian system (microcanon-
ical ensemble); later on we shall qualify when an interaction is considered
short-ranged in the present context. In such a case, the typical microscopic
(nonlinear) dynamics is expected to be strongly chaotic, in the sense that
the maximal Lyapunov exponent is positive. Such a system would necessarily
be mixing, i.e. it would quickly visit virtually all the accessible phase space
(more precisely, very close to almost all the accessible phase space) for almost
any possible initial condition. Furthermore, it would necessarily be ergodic
with respect to some measure in the full phase space, i.e. time averages and
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ensemble averages would coincide. In most of the cases this measure is ex-
pected to be uniform in phase space, i.e. the hypothesis of equal probabilities
would be satisfied.

A slightly more complex situation is encountered for those systems which
exhibit a continuous phase transition. Let us consider the simple case of a
ferromagnet which is invariant under inversion of the (hard) axis of magne-
tization, e.g. the three-dimensional (d = 3) XY classical nearest-neighbour
ferromagnetic model on a simple cubic lattice, i.e. coupled planar rotators
localized on a lattice. If the system is in its disordered (paramagnetic) phase,
the limits t → ∞ and N → ∞ commute, and the entire phase space is ex-
pected to be equally well visited. If the system is in its ordered (ferromagnetic)
phase, the situation is expected to be more subtle. The limN→∞ limt→∞ set of
probabilities is, as before, equally distributed all over the entire phase space
for almost any initial condition. But this is not expected to be so for the
limt→∞ limN→∞ set of probabilities. The system probably lives, in this case,
only in half of the entire phase space. Indeed, if the initial condition is such
that the initial magnetization is positive, even infinitesimally positive, then
the system is expected to be ergodic but only in the half phase space asso-
ciated with positive magnetization; the other way around occurs if the initial
magnetization is negative. This illustrates, already in this simple example, the
importance that the ordering of those two limits can have.

A considerably more complex situation is expected to occur if we consider a
long-range-interacting model, e.g. the same d = 3 XY classical ferromagnetic
model on a simple cubic lattice as before, but now with a coupling constant
which decays with distance as 1/rα, where r is the distance measured in crys-
tal units, and 0 ≤ α < d (the nearest-neighbour model that we just discussed
corresponds to α → ∞, which is the extreme case of the short-ranged domain
α > d). The 0 ≤ α/d < 1 model also appears to have a continuous phase tran-
sition. In the disordered phase, the system is possibly ergodic over the entire
phase space. But in the ordered phase the result possibly strongly depends
on the ordering of the two limits. The limN→∞ limt→∞ set of probabilities
corresponds to the system living in the entire phase space. In contrast, the
limt→∞ limN→∞ set of probabilities for the same (conveniently scaled) total
energy might be considerably more complex. It seems that, for this ordering,
phase space exhibits at least two macroscopic basins of attraction. One of
them leads essentially to half of the same phase space where the system lives
in the limN→∞ limt→∞ ordering, i.e. the half phase space which is associated
with a sign for the magnetization which coincides with the sign of the initial
magnetization. The other basin of attraction could correspond well to living
in a very complicated, hierarchical-like, geometrical structure. This structure
could be a zero Lebesgue measure one (in the full multidimensional phase
space), somewhat similar to that of an airlines company, say Varig, whose
main hub is located at Sao Paulo, or Continental Airlines, whose main hub
is located at Houston. The specific location of the structure in phase space
would depend on the particular initial condition within that special basin of
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attraction, but the geometrical nature of the structure would be virtually the
same for any initial condition within that basin of attraction. The scenario
that we have depicted here is conjectural, not yet proved. It is however based
on various numerical evidences (see [1–3] and references therein). It is ex-
pected to be caused by a possibly vanishing maximal Lyapunov exponent. In
other words, one would possibly have, instead of strong, weak chaos.

(iv) We have to focus now further on the specific role played by the ini-
tial conditions. If the system is strongly chaotic, hence mixing, hence ergodic,
this point is irrelevant. We can make or not averages over initial conditions,
we can take almost any initial condition, the outcome for sufficiently long
times will be the same, in the sense that the set of probabilities in phase
space will be the same. But if the system is only weakly chaotic, the result
can drastically change from initial condition to initial condition. If both ini-
tial conditions belong to the same basin of attraction, the difference at the
macroscopic level could be quite irrelevant. If they belong however to different
basins of attraction, the results can be sensibly different. For some purposes
we might wish to stick to a specific initial condition within a certain class of
initial conditions. For other purposes, we might wish to average over all initial
conditions belonging to a given basin of attraction, or even over all possible
initial conditions of the entire phase space. The macroscopic result obtained
after averaging might considerably differ from that corresponding to a single
initial condition.

(v) Last but not least, the mathematical form of the entropy functional
must be addressed. Strictly speaking, if we have deduced (from microscopic
dynamics) the probabilities to be associated with every cell in phase space, we
can, in principle, calculate useful averages of any physical quantity of interest
which is defined in that phase space. In this sense, we do not need to introduce
an entropic functional which is defined precisely in terms of those probabil-
ities. Especially if we take into account that any set of physically relevant
probabilities can be obtained through extremization (typically maximization)
of an infinite number of entropic functionals (monotonically depending one
onto the other), given any set of physically and mathematically meaningful
constraints. However, if we wish to make contact with classical thermody-
namics, we certainly need to know the mathematical form of such an entropic
functional. This functional is expected to match, in the appropriate limits,
the classical, macroscopic, entropy à la Clausius. In particular, one expects it
to satisfy the Clausius property of extensivity, i.e. essentially to be propor-
tional to the weight or mass of the system. In statistical–mechanical terms,
we expect it to be proportional to N for large N .1

1 Let us anticipate that it has been recently shown [4, 5] that, if we impose a
Poissonian distribution for visitation times in phase space, in addition to the
first and second principles of thermodynamics, we obtain the Boltzmann–Gibbs
functional form for the entropy. If a conveniently deformed Poissonian distri-
bution is imposed instead, we obtain the Sq functional form. These results in
themselves cannot be considered as a justification from first principles of the
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The foundations of any statistical mechanics are, as already said, expected
to cover basically all of the above points. There is a wide-spread vague belief
among physicists that these steps have already been satisfactorily accom-
plished since long for the standard, Boltzmann–Gibbs (BG) statistical me-
chanics. This is not so! Not so surprising after all, given the enormity of the
corresponding task! For example, at this date, there is no available deduc-
tion, from and only from microscopic dynamics, of the validity, for thermal
equilibrium with a thermostat, of the celebrated BG exponential weight

pi =
e−βEi

∑W
j=1 e−βEj

, (1)

where β is proportional to the inverse temperature T of the thermostat, and
{Ei} are the eigenvalues of the Hamiltonian of the system (with a given set of
boundary conditions). Neither exists the deduction from microscopic dynamics
of the BG entropy

SBG = −k

W∑

i=1

pi ln pi

(
W∑

i=1

pi = 1

)
, (2)

where W is the total number of possible microscopic states and k is a conven-
tional positive constant (typically taken to be either the Boltzmann constant
kB , or simply unity).

For standard systems, there is not a single reasonable doubt about the cor-
rectness of the expressions (1) and (2), and of their relationships. But, from
the logical-deductive viewpoint, there is still pretty much work to be done!
This is, in fact, a kind of easy to notice. Indeed, all the textbooks, without
exception, introduce the BG factor and/or the entropy SBG in some kind of
phenomenological manner, or as self-evident, or within some axiomatic formu-
lation. None of them introduces them as (and only as) a rational consequence
of Newtonian, or quantum mechanics, using theory of probabilities. This is
in fact sometimes referred to as the Boltzmann program. Boltzmann himself
died without succeeding its implementation. Although important progress has
been accomplished in these last 130 years, the Boltzmann program still re-
mains in our days as a basic intellectual challenge. Were it not the genius of
scientists like Boltzmann and Gibbs, were we to exclusively depend on mathe-
matically well-constructed arguments, one of the monuments of contemporary
physics—BG statistical mechanics—would not exist!

Many anomalous natural, artificial and social systems exist for which BG
statistical concepts appear to be inapplicable. Typically because they live in
peculiar stationary or quasi stationary states that are quite different from

Boltzmann–Gibbs, or of the nonextensive, statistical mechanics. Indeed, the visi-
tation distributions are phenomenologically introduced, and the first and second
principles are just imposed. This connection is nevertheless extremely clarifying,
and can help producing a full justification.

This copy belongs to 'acha04'



26 C. Tsallis

thermal equilibrium, where BG statistics reigns. Nevertheless some of them
can still be handled within statistical mechanical methods, but with a more
general entropy, namely [6–8]

Sq ≡ k
1 −

∑W
i=1 p

q
i

q − 1
= k

W∑

i=1

pi lnq(1/pi) = −k
W∑

i=1

pq
i lnq pi (S1 = SBG), (3)

where

lnq x ≡ x1−q − 1
1 − q

(∀x > 0; ln1 x = lnx). (4)

It should be clear that, whatever is not yet mathematically justified in BG
statistical mechanics, it is even less justified in the present generalization. In
addition to this, some of the points that are relatively well understood in the
standard theory, can be still unclear in its generalization. In other words, the
theory we are presenting here is still in intense evolution. In any case, reviews
on the subject can be found in [9–20], and a bibliography can be found in [21].

In the present monograph, we review some important properties related
to the extensivity and the entropy production of Sq. We then make some
connection with strongly nonlinear dynamical phenomena such as turbulence.

2 Extensivity of the (Nonadditive) Entropy Sq

2.1 Remark on the Thermodynamical Limit

Let us assume a classical mechanical many-body system characterized by the
following Hamiltonian:

H = K + V =
N∑

i=1

p2
i

2m
+
∑

i�=j

V (rij), (5)

where V (r) presents no mathematical difficulties at the origin r = 0 (e.g. it is
either nonsingular, or, if it is singular, it is integrable), and which behaves at
long distances like

V (r) ∼ − A

rα
(A > 0; α ≥ 0). (6)

A typical example would be the d = 3 Lennard–Jones gas model, for which
α = 6. Were it is not the nonintegrable singularity at the origin, another
example could be Newtonian d = 3 gravitation, for which α = 1.

Let us analyse the characteristic average potential energy Upot per particle

Upot(N)
N

∝ −A

∫ ∞

1

dr rd−1 r−α, (7)
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where we have integrated from a typical distance (taken equal to unity) on.
This is the typical energy one would calculate within a BG approach. We see
immediately that this integral converges for α/d > 1 (hereafter referred to as
short-range interactions for classical systems) but diverges for 0 ≤ α/d ≤ 1
(hereafter referred to as long-range interactions). This already indicates that
something anomalous is happening.2 By the way, the fact is historically fas-
cinating that Gibbs himself was aware of the possibility of such difficulty!
Indeed, in his 1902 book [22], he wrote:

In treating of the canonical distribution, we shall always suppose the multiple in-

tegral in Eq. (92) [the partition function, as we call it nowadays] to have a finite

value, as otherwise the coefficient of probability vanishes, and the law of distribution

becomes illusory. This will exclude certain cases, but not such apparently, as will

affect the value of our results with respect to their bearing on thermodynamics. It

will exclude, for instance, cases in which the system or parts of it can be distributed

in unlimited space [. . .]. It also excludes many cases in which the energy can decrease

without limit, as when the system contains material points which attract one an-

other inversely as the squares of their distances. [. . .]. For the purposes of a general

discussion, it is sufficient to call attention to the assumption implicitly involved in

the formula (92).

On a vein slightly differing from the standard BG recipe, which would
demand integration up to infinity in Eq. (7), let us assume that the N -particle
system is roughly homogeneously distributed within a limited sphere. Then
Eq. (7) has to be replaced by the following one:

Upot(N)
N

∝ −A

∫ N1/d

1

dr rd−1 r−α = −A

d
Ñ, (8)

with

Ñ ≡ N1−α/d − 1
1 − α/d

= lnα/d N. (9)

2 This is essentially the very same reason for which virtually all statistical me-
chanics textbooks discuss paradigmatic systems like a particle in a square well,
the harmonic oscillator, the rigid rotator and a spin 1/2 in the presence of an
external magnetic field, but not the Hydrogen atom! All these simple systems, in-
cluding, of course, the Hydrogen atom, are discussed in the quantum mechanics
textbooks. But, in what concerns statistical mechanics, the Hydrogen atom is an
illustrious absent. Amazingly enough, with extremely rare exceptions, this highly
important system passes with no comments at all in the textbooks on thermal
statistics. The—understandable but not justifiable—reason of course is that, since
the system involves the long-range Coulombian attraction between electron and
proton, the energy spectrum exhibits an accumulation point at the ionization
energy (frequently taken to be zero), which makes the BG partition function to
diverge.
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Therefore, in the N →∞ limit, Upot(N)/N approaches a constant (∝ −A/
(α − d)) if α/d > 1, and diverges like N1−α/d/(1 − α/d) if 0 ≤ α/d < 1
(it diverges logarithmically if α/d = 1). In other words, the energy is exten-
sive for short-range interactions (α/d > 1) and nonextensive for long-range
interactions (0 ≤ α/d ≤ 1).

A totally similar situation occurs if we have, in our Hamiltonian (5), say N
rotators localized on a d-dimensional lattice. The coupling constant between
site i and site j could then depend on distance like 1/rα

ij , where rij runs over
all sites of the lattice. For example, for a linear chain, we would have rij =
1, 2, 3, ...; for a square lattice we would have rij = 1,

√
2, 2, .... In this case, the

average potential energy per rotator would be proportional to
∑

i�=j r
−α
ij . This

quantity has a behaviour totally similar to Ñ as defined in Eq. (9). This is to
say, for N 
 1, it converges to a (positive) constant if α/d > 1 and diverges
proportionally to N1−α/d if 0 ≤ α/d < 1 (logarithmically if α/d = 1).

We are now prepared to make a thermodynamical remark ([23] and refer-
ences within [24]).

Let us assume an N -sized system characterized by say its temperature T ,
pressure p and external magnetic field H. Its Gibbs thermodynamical energy
will be given by

G(N,T, p,H) = U(N,T, p,H) − TS(N,T, p,H)
+ p V (N,T, p,H) −HM(N,T, p,H), (10)

where U , S, V and M are respectively its internal energy, entropy, volume
and magnetization. It follows that

G(N,T, p,H)
NÑ

=
U(N,T, p,H)

NÑ
− T

Ñ

S(N,T, p,H)
N

+
p

Ñ

V (N,T, p,H)
N

− H

Ñ

M(N,T, p,H)
N

. (11)

We can now apply the operation limN→∞ on both members of this equality.
We then obtain

g
(
T̃ , p̃, H̃

)
= u

(
T̃ , p̃, H̃

)
− T̃ s

(
T̃ , p̃, H̃

)
+ p̃ v

(
T̃ , p̃, H̃

)
− H̃m

(
T̃ , p̃, H̃

)
,

(12)

where the definitions of the new variables are self-explanatory. For example,
g(T̃ , p̃, H̃) ≡ limN→∞ G(N,T, p,H)/(NÑ), s(T̃ , p̃, H̃) ≡ limN→∞ S(N,T, p,H)
/N , T̃ ≡ limN→∞ T/Ñ and so on. These scalings have already been verified
in various systems (see [24] and references therein). For example the α/d = 0
particular case corresponds to the usual mean field approach. Indeed, in this
case we have Ñ = N − 1 ∼ N , which is equivalent to the usual rescaling of
the microscopic coupling constant through division by N (see also [25]).

For short-range interactions, Ñ → constant, consequently we recover the
usual extensivity of Gibbs, Helmholtz and internal thermodynamical energies,
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entropy, volume and magnetization, as well as the intensivity of tempera-
ture, pressure and magnetic field. But for long-range interactions, Ñ diverges
with N , therefore the situation is quite more subtle. Indeed, in order to
have nontrivial equations of states we must express the nonextensive Gibbs,
Helmholtz and internal thermodynamical energies, as well as the extensive en-
tropy, volume and magnetization in terms of the rescaled variables (T̃ , p̃, H̃).
In general, i.e. ∀ (α/d), we see that the variables that are intensive when the
interactions are short-ranged remain a single class (although scaling with Ñ)
in the presence of long-ranged interactions. But, in what concerns the vari-
ables that are extensive when the interactions are short-ranged, the situation
is more complex. Indeed, they split into two classes. One of them contains all
types of thermodynamical energies (G,F,U), which scale with NÑ . The other
one contains all those variables (S, V,M) that appear in pairs in the thermo-
dynamical energies. These variables remain extensive, in the sense that they
scale with N .

By no means this implies that thermodynamical equilibrium between two
systems occurs in general when they share the same values of say (T̃ , p̃, H̃).
It only means that, in order to have finite mathematical functions for their
equations of states, the variables (T̃ , p̃, H̃) must be used. Although this has
to be verified, thermodynamical equilibrium might still be directly related to
sharing the usual variables (T, p,H).

It is clear that all this is quite subtle, and easily subject to error. Nev-
ertheless, it constitutes a strong indication that SBG has to be generalized
without violating its extensivity, i.e. as introduced on macroscopic grounds
by Clausius. What we present in the next subsection is perfectly consistent
with this expectation.

2.2 On How Global Correlations Mandate the Generalization
of the (Additive) Entropy SBG

Let us consider that the N (identical) elements of a system are independent
in the probabilistic sense, i.e. the probabilities of the states of the N -system
satisfy pA1+A2+...+AN

i1,i2,...,iN
= pA1

i1
pA2

i2
. . . pAN

iN
,∀(i1, i2, . . . , iN ). It can be straight-

forwardly verified that

SBG(N) ≡ −k
∑

i1,i2,...,iN

pA1+A2+...+AN
i1,i2,...,iN

ln pA1+A2+...+AN
i1,i2,...,iN

= −k
∑

i1,i2,...,iN

(
pA1

i1
pA2

i2
. . . pAN

iN

)
ln
(
pA1

i1
pA2

i2
. . . pAN

iN

)

= −k
∑

i1,i2,...,iN

(
pA1

i1
pA2

i2
. . . pAN

iN

)∑

in

ln pAn
in

= N

[
−k
∑

in

pAn
in

ln pAn
in

]
= NSBG(1). (13)
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This is to say, the BG entropy is, in this case, not only extensive but even
strictly additive. In a more complex system in which the joint probabilities do
not exactly, but only asymptotically, factorize, we expect limN→∞ SBG(N)/N
to be finite, even if SBG is not strictly proportional to N . This is what typically
occurs when the correlations are local, but not global. Such is the case for a
nonideal gas (e.g. the Lennard–Jones model), for magnets whose microscopic
interactions are nonzero only within some finite neighbourhood (e.g. among
first neighbours on some lattice), etc.

When global correlations exist in the system, the situation can drastically
change. Indeed, it can happen that SBG is not extensive anymore. And some
other form of entropic functional becomes necessary in order to re-establish
Clausius-like extensivity. We shall now exhibit one such probabilistic system
[26, 27]. We consider that the system is constituted by N identical and dis-
tinguishable binary variables. The probabilities are indicated in Table 1. The
details can be found in [26]. However, the basic idea is that, in the triangle
shown in Table 1, only a strip (the “left” strip in fact) whose width is d + 1
(d = 1, 2, 3, ...) has nonvanishing probabilities. All other probabilities are zero.
This is to say, although we have 2N possible states, only a small fraction of
them (increasingly small when N increases) is probabilistically occupied. More
precisely, the number of states that have nonzero probability increases with
N like Nd. It is the fact that limN→∞ Nd/2N = 0 which makes that SBG

cannot be extensive anymore. In contrast, the generalized entropy (3) can be
extensive. This occurs if and only if

q = 1 − 1
d
. (14)

The extensivity of S1−(1/d) is illustrated in Fig. 1.
Summarizing what we observed in this section: when the probabilistic cor-

relations are either inexistent or only local, Sq is extensive only for q = 1;
if the correlations occur instead at a global scale, SBG is typically nonex-
tensive, whereas Sq can be extensive for a special value of q. This suggests
that, for all types of probabilistic systems, there might exist at least one en-
tropic functional which is extensive, and therefore smoothly matches classical
thermodynamics in the N → ∞ limit. Connections with the Central Limit
Theorem can be seen in [28–32].

3 Entropy Production Per Unit Time for Sq

In the previous Section we addressed the dependence of the entropy on N . We
now address its dependence on time t (discrete or continuous). The property
that we shall analyse is the so called entropy production per unit time. The
reader should however be aware that the same name is used in the litera-
ture with meanings that do not necessarily exactly coincide with the present
one. We indistinctively address dissipative or conservative dynamical systems
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Fig. 1. Sq(N) for anomalous systems: (a) d = 1, (b) d = 2, and (c) d = 3. Only for
q = 1− (1/d) we have a finite value for limN→∞ Sq(N)/N ; it vanishes (diverges) for
q > 1 − (1/d) (q < 1 − (1/d)). From [26]
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(typically nonlinear dynamical systems), with either few or many degrees of
freedom (or dimensions, or particles).

Let us partition the phase space in W little cells (typically equal in size),
designated by i = 1, 2, ...,W . Let us then randomly choose M initial conditions
within one of those cells, and follow their time evolution. The occupancies of
the cells will be noted Mi(t) (

∑W
i=1 Mi(t) = M,∀t). We can define a set of

probabilities through pi(t) ≡ Mi(t)/M , hence calculate the entropy

Sq(t) ≡
1 −

∑W
i=1[pi(t)]q

1 − q

[
S1(t) = −

W∑

i=1

pi(t) ln pi(t)

]
, (15)

where q can be any desired value. Our definition of entropy production per
unit time is as follows:

Kq ≡ lim
t→∞

lim
W→∞

lim
M→∞

Sq(t)
t

. (16)

K1 is a concept analogous to the so called Kolmogorov–Sinai entropy (or
entropy rate). The latter is based on single trajectories in phase space, whereas
the former is based, as we have seen, on an ensemble of initial conditions. They
coincide for many systems, but there might well be situations in which they
differ. Kq is clearly a generalization of K1 ≡ KBG.

What frequently (perhaps virtually always) occurs is that a special and
unique value of q exists (noted qe, where e stands for entropy), such that Kq

vanishes for q > qe, diverges for q < qe and is finite for q = qe. It is of course
qe and Kqe what characterizes the dynamics of the system. If the system
is strongly chaotic, in the sense that it has at least one positive Lyapunov

Table 1. Anomalous probability sets: d = 1 (top) and d = 2 (bottom). The left
number within parentheses indicates the multiplicity (i.e. Pascal triangle). The
right number indicates the corresponding probability. The probabilities, noted rN,n,
asymptotically satisfy the Leibnitz rule, i.e. limN→∞(rN,n + rN,n+1)/rN−1,n = 1
(∀n). In other words, the system is, in this sense, asymptotically scale-invariant.
From [26]

(N = 0) (1, 1)
(N = 1) (1, 1/2)(1, 1/2)
(N = 2) (1, 1/2)(2, 1/4)(1, 0)
(N = 3) (1, 1/2)(3, 1/6)(3, 0)(1, 0)
(N = 4) (1, 1/2)(4, 1/8)(6, 0)(4, 0)(1, 0)

(N = 0) (1, 1)
(N = 1) (1, 1/2)(1, 1/2)
(N = 2) (1, 1/3)(2, 1/6)(1, 1/3)
(N = 3) (1, 3/8)(3, 5/48)(3, 5/48)(1, 0)
(N = 4) (1, 2/5)(4, 3/40)(6, 3/60)(4, 0)(1, 0)
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exponent, then qe = 1 and K1 > 0. If the system is weakly chaotic (i.e. its
maximum Lyapunov exponent vanishes), then typically qe < 1, K1 = 0 and
Kqe > 0. The quantities qe and Kqe are intimately related to the sensitivity
to the initial conditions (see [33–60] and references therein). For example, if
the system has a one-dimensional phase space (noted x), the sensitivity to the
initial conditions is defined as

ξ ≡ lim
Δx(0)→0

Δx(t)
Δx(0)

, (17)

Fig. 2. Time dependence of Sq for strong chaos in the logistic map xt+1 = 1− ax2
t .

Top: For a = 2 we verify K1 = λ1 = ln 2 � 0.69. The effect of increasing the number
W of cells of the partition and that of varying q are exhibited. Bottom: For a = 2 and
a = 1.6 we obtain respectively K1 = λ1 � 0.69 and � 0.36. Kq vanishes (diverges)
if q > 1 (q < 1). From [61]
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where Δx(t) denotes the difference between two initially close trajectories.
If the system has a positive (or negative) Lyapunov exponent λ1, then

dξ/dt = λ1 ξ, hence
ξ = eλ1 t. (18)

If the system has a zero Lyapunov exponent λ1 (e.g. at the edge of chaos),
then dξ/dt = λqsen ξ

qsen (where sen stands for sensitivity), hence

ξ = e
λqsen t
qsen , (19)

where the q-exponential function is the inverse of the previously defined q-
logarithmic function, i.e.

ex
q ≡ [1 + (1 − q)x]1/(1−q) (ex

1 = ex) (20)

if [1 + (1 − q)x] ≥ 0, and zero otherwise.
These concepts are illustrated in Figs. 2 and 3 (for a dissipative one-

dimensional unimodal map), as well as in Fig. 4 (for a conservative two-
dimensional map [41]).

As a final remark, let us stress the very suggestive fact that the N -
dependence and the t-dependence of Sq are strikingly similar. Strong chaos
eventually leads to a full occupation of phase space. Both aspects mandate
SBG as the appropriate entropy. Indeed, it is SBG which is extensive, and it is
again SBG which has a finite entropy production per unit time. Weak chaos,
although not necessarily, may lead to a partial occupation of phase space.
Both aspects typically point onto an entropy like Sq, which, for a special

q = 0.1

q = 0.2445

q = 0.5

S  (t)q
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t +1 t
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Fig. 3. Time dependence of Sq for the (first) edge of chaos of the logistic map
xt+1 = 1 − ax2

t (Courtesy of F. Baldovin)
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Fig. 4. Time-evolution of the statistical entropy Sq for different values of q. The
phase space has been divided into W = 4, 000×4, 000 equal cells of size l = 5×10−4

and the initial ensemble is characterized by N = 103 points randomly distributed
inside a partition-square. Curves are the result of an average over 100 different initial
squares randomly chosen in phase space. The analysis of the derivative of Sq in (b)
shows that only for q = 0 a linear behaviour is obtained. In fact, a linear regression
provides S0(n) = 1.029 n + 1.997 with a correlation coefficient R = 0.99993. (c)
shows that the linear growth for S0 is reached from above, in the limit W → ∞.
From [41]

value of q (typically below unity), exhibits both extensivity and finite entropy
production. Further comments about this deep and intriguing property can
be found in [27, 62].

4 Superstatistics and Connection With Turbulence

A variety of generalizations and extensions of the entropy Sq and/or of its
associated statistics are already available in the literature. We briefly review
here some of them, namely the crossover statistics [63, 64], the Beck–Cohen
superstatistics [65–74], and finally the quite general q-spectral statistics [75].
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Crossover statistics contains q-statistics as a particular case. Superstatistics
contains crossover statistics as a particular case. Finally q-spectral statistics
possibly contains superstatistics as a particular case.

4.1 Crossover Statistics

The optimization of Sq with appropriate constraints yields the following dis-
tribution for the stationary state:

pi =
e
−β (Ei−Uq)
q

∑W
j=1 e

−β (Ej−Uq)
q

, (21)

where

Uq ≡
∑W

j=1 p
q
jEj

∑W
j=1 p

q
j

, (22)

β being an inverse-temperature Lagrange parameter which can be determined
as a function of Uq by using relation (22).

Equation (21) can be rewritten as follows:

pi =
e
−βq Ei
q

∑W
j=1 e

−βq Ej
q

, (23)

where βq is a simple function of β and Uq. In order to simplify the notation,
we shall use (pi, Ei) → (p,E). Then, from Eq. (23) it follows that

p(E)/p(0) = e−βq E
q . (24)

This relation is the solution of the following ordinary differential equation:

d [p/p(0)]
dE

= −βq [p/p(0)]q. (25)

Clearly, this approach recovers the BG factor p(E)/p(0) = e−β1 E as the q = 1
particular instance.

We can now easily unify the BG factor and the q-factor by postulating

d [p/p(0)]
dE

= −β1 [p/p(0)] − (βq − β1) [p/p(0)]q. (26)

If we have q = 1 or βq = β1 we recover the BG weight. If we have β1 = 0 we
recover the q-statistical weight. The general solution of Eq. (26) is given by

p/p(0) =
1

[
1 + βq

β1

(
e(q−1) β1 E − 1

)] 1
q−1

. (27)
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For q > 1 and 0 < β1 � βq we have an interesting crossover (from which this
statistics is named). Indeed, for 0 < (q − 1)β1E � 1, we have p(E)/p(0) ∼
e
−βq E
q , whereas, for (q − 1)β1E 
 1, we have p(E) ∝ e−β1 E . In other words,

by increasing the energy E, the stationary state distribution makes a crossover
from q-statistics to BG statistics.

As an aside remark, let us notice that, in the limit βq/β1 → ∞ and
p(0)β1/βq → C, where C is a constant, Eq. (27) becomes

p(E) =
C

[
e(q−1) β1 E − 1

] 1
q−1

. (28)

If q = 2 this distribution becomes

p(E) =
C

eβ1 E − 1
. (29)

If we multiply this statistical weight by the d = 3 photon density of states
g(E) ∝ E2 and by the energy E, we recover the celebrated Planck law for the
black-body radiation

u(ν) ∝ ν3

ehν/kBT − 1
, (30)

where we have identified β1 → 1/kBT and E → hν. In this sense, the distri-
bution (27) can be seen, interestingly enough, as a generalization of Planck
statistics.

4.2 Superstatistics

The superstatistical approach was introduced by Beck and Cohen [65], and
proceeds along quite different lines. We follow here the version recently pub-
lished in [74].

We start with a BG factor e−β E , and focus on the frequent situation
where β itself is not well defined. Indeed, spatio-temporal fluctuations can
make β itself to behave as a random variable. It is from this fact that the
word superstatistics was coined. Indeed, it is in some sense a statistics of
statistics. The BG factor can be generalized as follows:

p(E) =
∫ ∞

0

dβ f(β)
1

Z(β)
g(E) e−β E , (31)

where g(E) is the density of states and Z(β) is the normalization constant
associated with g(E)e−β E for a given β. If the distribution f(β) is a Dirac
delta function, then we recover BG statistics. But f(β) can be a quite general
distribution. It can be, for instance, a χ2 distribution (sometimes also called
Gamma distribution) with degree n, i.e.

f(β) =
1

Γ (n/2)

(
n

2β0

)n/2

βn/2−1 e−nβ/(2β0), (32)

This copy belongs to 'acha04'



38 C. Tsallis

where β0 is the average of β. If we introduce this f(β) into Eq. (31), we
precisely obtain q-statistics with

q = 1 +
2

n + d
, (33)

d being the space dimension where the system lives. This is to say p(E) decays
like a power law with E.

We can in fact define, in general, the parameter

qBC ≡
〈
β2
〉

〈β〉2 , (34)

where 〈(. . . )〉 ≡
∫∞
0

dβ f(β)(. . .), and BC stands for Beck–Cohen. If f(β) is
the χ2 distribution, then we have qBC = q.

It might happen that it is not β, but 1/β, which follows a χ2 distribution.
In this case, we have

f(β) =
β0

Γ (n/2)

(
nβ0

2

)n/2

β−n/2−2 e−nβ0/(2β), (35)

If we introduce this f(β) into Eq. (31), we obtain a p(E) which exponentially
decays with E.

A third interesting situation refers to β being log-normally distributed, i.e.

f(β) =
1√

2πsβ
e

−[ln(β/μ)]2

2s2 , (36)

where μ and s2 are convenient mean and variance parameters. The distribu-
tion p(E) has no analytical expression in this case, but it can of course be
numerically calculated without any particular difficulty. As we shall mention
later on, it is precisely this case which appears to play a special role for both
Lagrangian and Eulerian turbulence.

Generally speaking, we see from its definition (31) that superstatistics
p(E) is mathematically well defined if f(β) has a Laplace or Laplace-like
transform. We have not checked this for the crossover distribution (27). This
is to say we have not attempted to calculate the inverse Laplace or Laplace-like
transform of distribution (27). However, (27) being a smooth unification of
BG statistics and q-statistics, it seems quite plausible that the corresponding
f(β) distribution would be well defined. It is for this reason that we believe
that crossover statistics is a particular case of superstatistics.

It is clear that distributions p(E) might exist which have no f(β) dis-
tribution to be generated from. Essentially because the inverse Laplace or
Laplace-like transform does not exist. Such cases cannot be seen as supersta-
tistical. This leads us to the Sect. 4.3, where we present a procedure which
does not seem to require the existence of Laplace-like transforms, being thus
more general.
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4.3 q-Spectral Statistics

Within this approach, we do not assume, like in superstatistics, that β is
a random variable. We rather assume that q is a random variable. In other
words, instead of having the distribution f(β), we are now going to have a
spectral distribution κ(q), such that

∣∣∣∣
∫ ∞

−∞
dq κ(q)

∣∣∣∣ < ∞. (37)

Since q-statistics is itself a superstatistics—the χ2 one—, and since the present
approach considers q itself to be some kind of random variable, spectral statis-
tics appears to be, amusingly enough, some sort of “super-superstatistics”!

The procedure consists in a natural generalization of the differential equa-
tion (26). In that crossover statistics, we have two q-indices that are involved,
namely q = 1 and an arbitrary value of q. We can then generalize (26) as
follows:

d [p/p(0)]
dE

=
∫ ∞

−∞
dτ κ(τ)[p/p(0)]τ . (38)

If κ(τ) ∝ δ(τ − q) (δ(x) being Dirac Delta distribution), p(E) is just q-
statistics. If κ(τ) ∝ a δ(τ − 1) + b δ(τ − q), we basically have the crossover
statistics generated by Eq. (26). We may have a more general situation, namely
that corresponding to κ(τ) ∝ a δ(τ − r) + b δ(τ − q), whose solution can be
analytically solved in terms of hypergeometric functions (see [63, 64]). It is
clear that we can have many classes of spectral functions κ(q), and some of
them are discussed in [75], to where we refer the reader for further details.

Superstatistics are well defined for f(β) that have a Laplace-like transform.
The q-spectral statistics are well defined when κ(q) is such that Eq. (38) admits
a physically acceptable solution. Which one is more general? The answer is
not trivial, and would deserve special analysis. However, since the trivial case
κ(τ) ∝ δ(τ−q) already is, as mentioned above, a superstatistics, it might well
be that the present approach is more general than the superstatistical one.
Rigorously speaking, this technical point remains, at the present stage, as an
open question.

4.4 Application to Turbulence

Many quantities are of interest in order to physically understand a hard prob-
lem such as turbulence. A central such quantity is the distribution of differ-
ences of velocities. These differences can refer to the same location at two
different times, or at two different locations at the same time, or even to
more complex situations. The velocity difference distributions are, over sev-
eral decades, very well fitted by q-Gaussians [76–90] (see examples in Figs. 5
and 8). However, when further decades are accessible (i.e. for large differences
of velocities), a gradual departure from χ2 superstatistics might be observed.
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Fig. 5. Transverse velocity distributions at (a) ε = 0.08 and (b) ε = 0.17. Details
in [84]
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Fig. 6. Rescaled probability density of the fluctuating parameter β, as obtained for
the Florence airport data. Also shown is a Gamma distribution (dashed line) and a
lognormal distribution (solid line) sharing the same mean and variance as the data.
The data are reasonably well fitted by the log-normal distribution. From [91]

This copy belongs to 'acha04'



Nonextensive Statistical Mechanics and Nonlinear Dynamics 41

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−8

10
−6

10
−4

10
−2

10
0

10
2

β

f(
β)

‘Gamma’
‘Lognormal’
‘Taylor−Couette−experiment’

Fig. 7. Probability density of the local variance parameter β as extracted from
a time series of longitudinal velocity differences measured in a turbulent Taylor–
Couette flow at Reynolds number Re = 540000. A log-normal distribution yields a
good fit. From [91]
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at the airport. From [91]
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It seems then that, in some cases, the log-normal superstatistics does a better
job [74, 91] (see examples in Figs. 6, 7 and 8).

There is no surprise that q-statistics and log-normal superstatistics coin-
cide for relatively small velocity differences. This is in fact expected for all
superstatistics on quite general grounds [65]. Now, why log-normal super-
statistics describes so well the velocity difference distributions of a variety of
turbulent phenomena remains, to the best of our knowledge, an open question.

5 Conclusions

We have shown that the value of the index q for which the entropy Sq is
extensive is intimately related to the nature of the probabilistic correlations
between the N elements of the system. If the correlations are inexistent or only
local, then q = 1. If they are global, then q < 1. This exhibits a fundamental
point: if we wish to preserve Clausius-like extensivity for the entropy in order
to adequately match classical thermodynamics, we may need to consider en-
tropies Sq different from the BG one (see also [92–96]). How these properties
are entangled with the range of the interactions has also been discussed.

We have also shown that the value of the index q for which the entropy
Sq yields a finite entropy production per unit time is intimately related to
the sensitivity to the initial conditions. If the system is strongly chaotic, i.e.
if the maximal Lyapunov exponent is positive, then q = 1. If the system is
weakly chaotic, i.e. if the maximal Lyapunov exponent vanishes, then q < 1.
This exhibits another fundamental point: if we wish to produce, while exploring
phase space, a finite amount of entropy per unit time, we may need to consider
entropies Sq different from the BG one.

These two facts are so amazingly similar that there must be some deep
relation between the N -dependence and the t-dependence of the entropy. In
fact, it seems reasonable to conjecture (as done in [62]) that, under some
circumstances, it is one and the same dependence. In other words, the entropy
would depend on Nt, and not separately on N and on t.

Finally, we have briefly reviewed three successive generalizations of q-
statistics, namely crossover statistics, which is contained in superstatistics,
which in turn is possibly contained in q-spectral statistics. How q-statistics
and superstatistics (especially the log-normal superstatistics) are connected
with turbulence has also been exhibited. The basic ingredient for the applica-
bility of nonextensive statistics is to have a power-law, and not exponential,
dependence on time of the sensitivity to the initial conditions. This fact, to-
gether with the adequacy of such statistics for describing the velocity distribu-
tions in very turbulent systems, suggests that the physically most enlightening
standpoint might be to focus on relatively long-ranged interactions between
structures such as vortices or others.
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Astrophysical fluid flows and particularly stellar convection are considered to
be turbulent rather than laminar. This judgement is based on the Reynolds
number Re := (UL)/ν which compares the relative importance of non-linear
inertial to viscous forces. In astrophysical flows Re is usually in the range
of 1010 . . . 1014. U and L are typical velocities and length scales for the flow.
L can either characterize the size of the entire system, or the size of the largest
structures found in the flow, or the length scale for which the kinetic energy
of the flow has its maximum. The velocity U is associated with this length
scale. Hence, the Reynolds number is a dimensionless, but scale-dependent
quantity. Even if the kinematic viscosity ν were several orders of magnitudes
larger than in a terrestrial flow with similar U , ν would easily be overpowered
by UL due to the enormous size of the astrophysical systems, which results
in huge values of L and thus huge values of Re. Various definitions have
been suggested for the meaning of the term turbulence. A practical one was
given in Chap. I of [85]: a turbulent flow must be unpredictable (small errors
in initial conditions amplify so much that deterministic predictions become
impossible), mix a fluid more efficiently than molecular processes, and involve
a wide range of spatial scales. This does not exclude coherent structures which
are defined as spatial regions that at a given time show some organization with
respect to any quantity related to the flow. The term fully developed is used
to describe turbulence which can evolve without imposed constraints due to
spatial boundaries, external forces and viscosity. Thus, independently of how
large Re might be, no real turbulent flow can be fully developed at the largest
scales or at the scales of energy exchange with its environment. In line with
this notion the concept that coherent structures emerge from chaos under
the action of external constraints has been suggested (Chap. IV in [85]) to
understand many of the results found in the analysis of real turbulent flows.

Keeping these definitions in mind, we now take a closer look on turbulent
convection in stars and especially in our Sun. Most of the dynamical processes
on our Sun are related to its turbulent convection zone ([128], e.g.). A better
understanding of these processes clearly has a direct impact on matters far
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beyond physics. But the very same processes are also interesting on their own:
stellar turbulent convection is a multi-scale phenomenon, both in space and
time, requiring a detailed understanding of hydrodynamics and its interaction
with external or self-generated magnetic fields, with radiation, thermodynam-
ics, nuclear processes, diffusion phenomena and self-gravitation.

Here, we discuss some basic and also surprising properties of the high Re
number flows in stellar convection zones. Convection near the visible surface
of stars is chosen as the main subject, since the most accurate observational
(experimental) data are available for that case. In Sect. 1 we introduce the
background for the hydrodynamical description of stars, the origin of con-
vective instabilities in stars, and the main effects of convection accounted for
in stellar models. In Sect. 2 we review the observational evidence for turbu-
lence and turbulent convection in the Sun and other stars. Since modelling of
turbulent convection is treated in detail in the chapter “Turbulence in Astro-
physical and Geophysical Flows” and in the chapter “Turbulence in the Lower
Troposphere: Second-Order Closure and Mass-Flux Modelling Frameworks”
in this book, we only provide a brief overview on that subject in Sect. 3 and
then focus on how to perform numerical simulations to probe the available
models. The consequences of finite numerical resolution and the different con-
cepts for dealing with unresolved length scales are presented together with
the constraints put by accurate time integrations during such simulations. In
Sect. 4 we discuss how realistic simulations have to be set up to minimize
the limitations introduced by the available computational resources. Resolv-
ing shear driven turbulence in convection simulations provides a particularly
demanding example. We continue with a discussion of the requirements that
are put on time integrations when computing ensemble-averaged quantities.
In Sect. 5 the influence of boundary conditions on simulations of solar surface
convection is shown. Ensemble-averaged higher order moments are provided
for comparisons of solar convection with convection in geophysical systems.
In Sect. 6 we turn to the problem of convective turbulent mixing and scal-
ing relations in layers around stellar convection zones, still one of the most
urging questions in stellar astrophysics pushing both models and simulations
of turbulent convection to their limits. Section 7 provides a summary and
conclusions.

1 Convective Heat Transport and Mixing in Stars

The theory of stellar structure predicts matter in a star to be in a gaseous
phase. Because of high temperatures the gas exists mostly in ionized form.
A detailed treatise on the theory of stellar structure can be found, for in-
stance, in [137]. In stars the gas is stratified because of self-gravitation created
by the huge amount of mass, some 2 · 1032 to 1035 g, in a comparatively small
volume. During a long period of their evolution, when they convert hydrogen
in their central region (core) into helium by nuclear fusion, stars have quite
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“terrestrial” average densities ρ between about 0.05 and 50 g cm−3. Their cen-
tral densities ρc are typically two orders of magnitudes larger than ρ while
densities at the surface, the visible layers of stars, are some six orders of mag-
nitudes smaller. During the later stages of evolution much lower values of ρ
occur, in the range of 10−7 to 10−4 g cm−3, as a result of huge stellar envelopes,
which have expanded by two to three orders of magnitude in comparison with
earlier phases during which hydrogen fusion takes place in the stellar core. At
the same time central densities become more and more extreme. In the end
this evolution process creates compact objects with ρ of 106 g cm−3 (white
dwarfs) and even up to about 1014 g cm−3 (neutron stars) [117, 137], after
much of the extended envelope has been transferred back into the interstellar
environment. Initially, temperatures T range from about 2000 to 50,000 K at
the surface to several 107 K in the centre. Core temperatures can exceed 109 K
during late phases of stellar evolution [71, 137]. This distribution of temper-
atures and densities is the reason why matter in stars can be described as
a fluid. Consequently, the equations of hydrodynamics are applicable to the
study of the structure and evolution of stars.1

1.1 Hydrodynamical Description of Stars

The equations of hydrodynamics describe the evolution of mass density ρ,
momentum density ρv and internal energy density ρε of the gas. They read

∂ρ

∂t
+ div (ρv) = 0, (1)

∂

∂t
(ρv) + div [ρ(v ⊗ v)] + divΠ = −ρ gradΦ, (2)

∂

∂t
(ρE) + div [(ρE + p)v] + div h − div(πv) = −ρv gradΦ. (3)

Equation (1) is the well-known continuity equation, while Eq. (2) is the
Navier–Stokes equation. The expression v⊗v is the dyadic product of v with
itself. The pressure tensor Π appearing in (2) is commonly rewritten as

Π = p I − π, (4)

with I being the unit tensor, p the isotropic pressure from velocity fluctuations
of the particles of the fluid and π the tensor viscosity with its components

πik = η

(
∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik div v

)
+ ζδikdiv v. (5)

1 In the outermost layers of cool stars, dust particles can form. During late stages
of white dwarf and neutron star evolution, solid state and more exotic phases can
occur. We exclude these objects and stages from discussions in this review.
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As usual, here δik denotes the Kronecker symbol, while η and ζ are the
molecular and the bulk viscosity coefficients respectively. The kinematic vis-
cosity ν depends on the molecular viscosity η via ν = η/ρ. The form of (5)
is derived in [83], e.g., and is an approximation known as Newtonian fluid.
Φ denotes the sum of all external potentials (including gravitation). In the
energy equation (3) the specific internal energy ε is related to the total spe-
cific energy E (in units of energy per mass) through E ≡ 1

2 |v|2 + ε whereas h
denotes the energy flux by heat conduction. The chapter “An Introduction to
Turbulence” provides a derivation of (1), (2), (3), (4) and (5) from statistical
physics. A continuum mechanics approach can be found, for example, in [83].
A possible choice for h is the phenomenological ansatz

h = −Kh gradT. (6)

In this relation, Kh is the heat conduction coefficient. Equation (6) assumes
that conduction is a purely diffusive process. In stars, radiation is much more
efficient for energy transport than heat conduction, with the exception of
conditions of very high densities as found in the interior of compact stars (see
[137]). If the mean free path of photons lph is very small, radiative transfer
can also be described as a diffusion process:

h = −Krad gradT. (7)

Here, Krad is the radiative conductivity. For typical conditions in stellar
interiors, lph is of the order of 2 cm along which temperature changes in radial
direction are ∼ 3 · 10−4 K (see [71]), which justifies (7). Thus, a very accurate
approximation for Krad, which becomes exact in the limit of small lph, is

Krad =
4acT 3

3κρ
=

16σT 3

3κρ
, (8)

where a, c and σ are the radiation constant, vacuum speed of light and Stefan–
Boltzmann constant, respectively, and κ is the Rosseland mean opacity (see
[71]). The latter is the specific cross-section of a gas for photons emitted and
absorbed at local thermodynamical conditions and averaged over all frequen-
cies (thus, [κ] = cm2 g−1 and κ = κ(T, ρ) for a given chemical composition).

Close to the surface of a star, lph increases and in fact, once photons are
emitted into the interstellar environment, it becomes almost arbitrarily large.
In that case, equations (1), (2) and (3) have to be coupled to the equations of
radiative transfer. The resulting equations of radiation hydrodynamics (RHD)
augment (1), (2) and (3) by equations for energy and momentum density
of photons [91]. Moreover, coupling terms have to be added to (2) and (3).
For Eq. (2) this is essentially the contribution of radiative pressure to the
momentum density balance. It is common practice to include this term into
the definition of Π in (4) by writing p = pgas+prad. In this form it also couples
to Eq. (3). In addition, the term h can no longer be approximated through
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(7), but has to be obtained from solving a transport equation for the radiation
field. It is therefore more convenient to rewrite (3) into the general form

∂

∂t
(ρE)+div [(ρE + p)v]−Qrad−Qcond−Qnuc−div(πv) = −ρv gradΦ, (9)

where Qrad = div F rad is the radiative heating rate with F rad as the radiative
energy flux. Qcond = div(Kh gradT ) is the conductive heating rate and Qnuc

is the heating rate due to local nuclear energy generation. Near the surface of
stars, Qnuc = 0 and Qcond ≈ 0. For this case it is sufficient to consider

∂

∂t
(ρE) + div [(ρE + p)v] −Qrad − div(πv) = −ρv gradΦ, (10)

instead of (3). In [91] the interested reader can find different approximations
and generalizations of (10) useful for the study of RHD problems.

For some problems in stellar astrophysics one cannot neglect that the stel-
lar plasma generates magnetic fields (dynamo effect) and interacts with both
external and self-generated fields. To investigate them it is essential to gener-
alize Eqs. (1), (2) and (3) to the equations of magneto-hydrodynamics (MHD).
Derivations and discussions of the MHD equations can be found, for instance,
in [16, 39, 97] (see also the chapter “Magnetohydrodynamic Turbulence”).
A derivation of the MHD equations from equations governing microscopic
particle motions can be found in [20]. For the study of sun spots and other
magnetically active regions at the solar surface and of solar activity in gen-
eral it is necessary to couple the MHD equations to the equations of radiative
transfer. In the following, we do not discuss this case of radiation magneto-
hydrodynamics (RMHD), but rather focus on the non-magnetic case. This is
sufficient to describe the mean structure of the Sun, the generation of oscil-
lations (“p-modes”) and the bulk properties of magnetically quiet regions,
which dominate over most of the solar surface.

In Eqs. (2) and (10) the gravitational field appears as an external source
term through the potential Φ. Whenever a relativistic treatment is not abso-
lutely necessary, the latter can be calculated from the Poisson equation

� Φ = 4πρG, (11)

the Newtonian limit of Einstein’s gravitational field equations (see, for in-
stance, Chap. 12 in [82]). This is a fully consistent treatment, since in the
relativistic case the hydrodynamical equations have to be modified as well
to account for Lorentz invariance or full covariance (see [82, 83]). In stellar
astrophysics relativistic corrections are mainly of interest for the study of
dynamical stability of white dwarfs, the structure of neutron stars and core
collapse supernovae (see [117]). If rotation is not important, spherical symme-
try is assumed to hold. For this case the analytical solution of (11) is known
(see the discussion of Eq. (13)). If we study convection within the surface
region of such a star and the vertical domain considered is small compared
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to the stellar radius, we can approximate the solution of (11) by a constant
acceleration g = −gradΦ.

Instead of describing a star as a single-component fluid, it may also be
modelled as a multi-component fluid. For the stellar case the most interesting
components are hydrogen and helium. In later stages of stellar evolution,
heavier elements may have to be modelled as well. Trace elements can be
studied in a postprocessing step, if they do not change the temporal evolution
of the flow. In general, Eq. (1) has to be replaced by a set of equations for the
concentration of each species. Equations (2) and (3) are modified accordingly.
The motivation behind a multi-component treatment is the study of gradients
in chemical composition in the star which build up because of nuclear processes
or diffusion [71].

The system of dynamical equations for the fluid is closed by an equation
of state, p = p(ρ, ε) (or more commonly, p = p(ρ, T ), since ε = ε(ρ, T )) and
its associated thermodynamical derivatives. They are usually given in tabular
form. The same is done for the opacity κ = κ(ρ, T ) and the rate of nuclear
energy generation Qnuc(ρ, T ) = ρ(εn(ρ, T ) − εν(ρ, T )). Here, εn is the nuclear
energy production per unit of mass and time. εν denotes the energy loss due
to neutrinos produced in the star which are not already accounted for by the
contributions to εn. Details can be found in [71, 117, 137]. The same procedure
could also be used for viscosity – we return to this in Sect. 4.1. Each of these
functions of microphysical input quantities is usually computed for a fixed
chemical composition. Interpolation is often used to avoid recomputing the
tables for each new mixture, although this is not always a viable option, since
the dependencies on the mixture can be highly non-linear.

1.2 Ensemble Averages, Convective Instability and Overshooting

In most cases, numerical solutions of the full set of hydrodynamical equations
are too complex and computationally too expensive to allow the construction
of complete stellar structure models. The complexity increases even further,
if the evolution of a star is to be followed over billions of years of stellar
time, since hydrodynamical processes near the surface of a star operate on
a typical time scale of a few seconds to a couple of minutes (see Sect. 4.3).
Hence, the theory of stellar structure and evolution is based on ensemble
averages of the full hydrodynamical equations under the assumption of quasi-
ergodicity of their solutions. In most cases, the physical quantities are also
averaged horizontally (over plane parallel layers or spheres). For the remainder
of this section we consider such averages as a function of depth, unless stated
otherwise. In the case of purely radiative energy transfer and v ≈ 0 (and thus
perfect spherical symmetry of the star) these averages read ([71, 137]):

∂Mr

∂r
= 4πr2ρ, (12)

∂p

∂r
=

−GMrρ

r2
, (13)
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∂T

∂r
=

−3κ(T, ρ) ρLr

16πr2ac T 3
, (14)

∂Lr

∂r
= 4πr2ρ(εn − εν −Qg). (15)

Here, Mr is the mass contained inside a radius r and Lr is the luminosity
(outwards directed energy loss at r per unit of time due to radiation). The
term Qg denotes energy produced or lost per unit of time by expansion or con-
traction of the star, which takes place on the very long Kelvin–Helmholtz time
scale (28), whence consistently v ≈ 0. Equations (12) and (13) are the velocity
independent part of (1) and (2) for the case of spherical symmetry. The latter
allows an analytical solution of (11) and is given by the radial component of
g = (−g, 0, 0), the well-known result that g = GMr/r

2. Equations (14) and
(15) are the velocity independent part of (9) under the assumption that Eqs.
(7) and (8) hold. Equations for the evolution of the chemical composition
are added to this system. Together they yield the (spherically and ensemble
averaged) stellar structure at time t.

What is the role of turbulent convection in this context? A problem of (12),
(13), (14) and (15) is that in general this system describes a physical solution
which becomes unstable to small vertical perturbations whenever ∂T/∂r is
sufficiently large. As first noted by K. Schwarzschild [115], a fluid stratified
along a temperature gradient (∂T/∂r) is unstable to buoyancy, if that gradient
is larger than the adiabatic one, |∂T/∂r| > |(∂T/∂r)ad|, ∂T/∂r < 0. The
adiabatic temperature gradient is given by the equation of state of the fluid.
Since (12), (13), (14) and (15) depend only on r, Eq. (13) is used in the
astrophysical literature to rewrite this condition into a relation between the
dimensionless logarithmic gradients,

∇ :=
∂ lnT

∂ ln p
=

p

T

∂T

∂r

∂r

∂p
, (16)

∇ad :=
(
∂ lnT

∂ ln p

)

ad

=
p

T

(
∂T

∂r

)

ad

∂r

∂p
. (17)

Thus, ∇−∇ad can be used to characterize the stability of the gas against
buoyancy at a given location r as follows:

if ∇−∇ad > 0 � unstable layer at r, (18)
if ∇−∇ad � 0 � stable layer at r.

This criterion assumes that the mean molecular weight remains constant.
In the same way we can rewrite the radiative temperature gradient, Eq. (14):

∇rad =
+3κ(T, ρ) pLr

16πacGT 4Mr
. (19)

An equivalent version of (18) is based on the entropy gradient ∂S/∂r: if
∂S/∂r � 0, the layer is stable against buoyancy, if ∂S/∂r < 0, the layer is
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unstable (cf. [137]). For ∇rad � ∇ad, the fluid is stable against convection,
if ∇ = ∇rad. Such layers of a star are called radiative. If ∇rad >∇ad, then
∇ = ∇rad is unstable according to (18). Because of radiative losses the convec-
tive energy transport is not entirely adiabatic and, hence, within a convective
layer we expect [137]:

∇rad > ∇ > ∇ad > 0. (20)

Equations (16), (17), (18), (19) and (20) assume some simplifications. A
real fluid has a finite viscosity which creates some threshold for the convective
instability. The same is true for radiative exchange of the fluid with its en-
vironment, because it prevents fully adiabatic heating and cooling. In stellar
astrophysics the stabilization due to molecular viscosity is always very small
because of the small Prandtl number in stars (Sect. 4.1). In a numerical simu-
lation of convection this effect can nevertheless lead to an erroneous stability
against small perturbations, since numerical viscosity is generally much larger
(Sect. 3.2). Stability due to large radiative losses is more important: in the
atmospheres of late B type stars with surface temperatures around 12,000 K
the gas should be unstable according to (18), but no observational indications
exist for such an instability [84]. Magnetic fields change the stability in a more
complex way. A general treatise is given in [39]. For stellar astrophysics, there
is another, important generalization of (18) which takes the effects of mean
shear flows and gradients in chemical composition into account. Both can ei-
ther enhance or decrease the stability of the fluid against buoyancy (see [30]
and the chapter “Turbulence in Astrophysical and Geophysical Flows”).

There are several reasons to have ∇rad > ∇ad in stars as follows from
analyzing (19) (cf. [71]). First of all, the opacity κ can be large. In that
case the radiative conductivity (8) becomes small and so does the convective
heat flux (7). In such layers radiation cannot sustain a large energy flux. Our
Sun is a good example for this scenario and the main reason for a large κ
in the upper part of its convection zone is the ionization of hydrogen. The
condition ∇rad > ∇ad can also be fulfilled, if ∇ad is lowered. This happens,
e.g. when atoms or molecules obtain additional internal degrees of freedom, for
example, when hydrogen is partially ionized [137]. As a consequence, buoyancy
is increased even further. That mechanism was in fact the first explanation
suggested for the convective instability of the solar surface layers [132] and
operates jointly with a large κ. The third reason for ∇rad > ∇ad, which is
independent of opacity and equation of state properties, is an intrinsically
high luminosity Lr. As an analysis of (12), (15) and (19) for r → 0 reveals,
this occurs in the core of a star whenever its nuclear energy production εn
is high. Such conditions exist, e.g. for massive stars during their hydrogen
burning phase, as opposed to ionization, which is responsible for convective
envelopes in cool stars [71].

It is instructive to compare the local stability criterion (18) with the sit-
uation found in a 3D numerical simulation of convection. Figure 1 shows
horizontal time averages of ∇−∇ad for a convection zone embedded between
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Fig. 1. Super-adiabaticity of temperature gradients (∇−∇ad) in a numerical sim-
ulation of convection. The ensemble average for each horizontal layer is compared
to averages taken only over up- and downflow areas respectively

two stable layers. The fluid obeys a perfect gas law with a constant ratio
γ = cp/cv of specific heats (at constant pressure and volume respectively).
A constant g is assumed which defines the vertical direction. Krad is a pre-
scribed function of depth held constant in time, as is the fixed Prandtl number
Pr = ν/χ = cp ρ ν/Krad. Lateral boundary conditions are periodic, vertical
ones are impenetrable, but stress-free (thus no shear stress is exerted on the
wall, see Sect. 5), with a fixed T on top and a constant ∂T/∂x (input heat
flux) at the bottom. In the interior of the convection zone (between x-values
of 20 and 60) convection is rather efficient, since the radiative flux drops to
< 35%. This simulation is described in more detail in [79–81]. Note that the
average taken only over areas for which the vertical velocity is pointing up-
wards (updrafts only) yields marginally stable values for ∇ −∇ad inside the
convectively unstable region. In contrast, the averages taken only over areas
with downwards pointing velocity (downdrafts only) clearly remain slightly
super-adiabatic (positive) throughout the interior of the convection zone.2

Obviously, here the downwards flowing material is responsible for the on av-
erage unstable stratification of the convection zone (see also Sect. 2), which is
defined by the points where the horizontal average of ∇ − ∇ad changes sign
(18). The super-adiabatic peak near the top of the convection zone is typical
also for convection zones that reach the surface of stars. It is caused by the
radiative heat exchange of the fluid with the uppermost layers which have a

2 The increase in ∇ − ∇ad for the downflow at the bottom is due to the lower
boundary conditions, which does not influence ∇−∇ad further above.
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high radiative conductivity (for the solar case cf. Fig. 5 and the comparisons
in [109]). The downflow regions show a similar peak at the bottom of the
convection zone. This is caused by plumes penetrating into the on average
stable stratification. They are not in thermal equilibrium with their environ-
ment until they have reached a certain depth. Note that the peaks of ∇−∇ad

are shifted in opposite ways near top and bottom and that they are twice as
large for the updrafts than for the downdrafts for the peak near the top.3 In
conclusion, convective mixing cannot be confined to regions where on average
∇−∇ad > 0. There is overshooting (OV) into adjacent layers, which the local,
linear stability criterion (18) neglects, since it does not account for advection
and thus the inertia of fluid in motion. Figure 1 also demonstrates that the
physical conditions in up- and downflows can appreciably differ (cf. [123] for
the solar case), which complicates the definition of suitably averaged physical
quantities in turbulent convective flows. We shall return to the question of
the nature of turbulence in stellar convection zones in Sect. 2.

1.3 Effects of Convection on Stellar Structure and Mixing

Model calculations for the structure and evolution of stars must account for
convection [71, 137]. The most important physical process neglected in (12),
(13), (14) and (15) is the energy flux produced by the convective instability.
Convection models used in stellar astrophysics such as the mixing length the-
ory [15, 17, 137] compute the heat flux generated by the advective transport
in layers where ∇ − ∇ad > 0. In the astrophysical literature this quantity
is known as the convective flux, Fconv, though it should more accurately be
called the enthalpy flux (the interested reader may find the relations derived
in [30] useful in this context). The physical reason behind this generalization
of (12), (13), (14) and (15) is that even though the ensemble average of the
momentum density ρv (or v) might be (nearly) zero, ensemble averages of
products of ρ, v, ρv, E, T , etc. with each other can be nonzero. Some of them
are quite large even after a horizontal mean value has been subtracted. The
products originate from the non-linearities of (1), (2) and (3) respectively (10).
Dynamical equations constructed for such quantities from the basic equations
(1), (2) and (3), as is done in the Reynolds stress approach, contain products
of even higher order (see [26–28] and the chapter “Turbulence in Astrophysical
and Geophysical Flows”). If fluctuations in specific heat and density are ne-
glected, Fconv = cp ρwθ [26]. Here, as before, cp and ρ are horizontal ensemble
averages, while w and θ denote the differences between the instantaneous val-
ues and the horizontal ensemble average of vertical velocity and temperature,
respectively. The ensemble average wθ is the main quantity to be retrieved
from a stellar convection model. The role Fconv has to play in the energy flux
balance of a star can be traced back to div [(ρE + p)v] in (3), resp. (10), which

3 The cusps within the stable zones are partially caused by the form of Krad as a
function of depth in that simulation.
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due to E = 1
2 |v|2 + ε and (7) implies that both (ρ ε + p)v and F rad should

appear in a flux balance once v differs from zero. From the same equations it
follows that there is an additional term related to 1

2ρ|v|2v in such a balance.
As for Fconv the horizontal ensemble average of this quantity yields a nonzero
vertical component, the turbulent kinetic energy flux Fkin. Standard models
of stellar convection neglect this term [17, 71, 137]. This can hold only for spe-
cial symmetries, such as up- and downflow covering identical horizontal areas,
which is usually not the case (cf. solar observations as shown in Fig. 2 and
numerical simulations of solar granulation [109, 124]). Modelling Fkin is the
domain of Reynolds stress models of stellar convection [27, 28, 35, 75, 138]. In
the end, both mixing length and Reynolds stress models replace (14) with a
new equation for T or ∂T/∂r which is coupled to further, non-linear algebraic
or differential equations. Stellar models with convection zones predict more
compact objects than their purely radiative counterparts. The reason for this
is that the much smaller temperature gradients of convection zones allow for
a much larger mass to be contained in hydrostatic balance within the same
volume (see the comparisons of radiative and convective stellar envelopes in
[71]). The radiative counterpart of the simulation shown in Fig. 1 has twice
the temperature of the relaxed convective model at the bottom, despite the
temperature at the top and the mass contained in the box are identical.

An important consequence of convective energy transport in stars is tur-
bulent pressure. It originates from the div [ρ(v ⊗ v)] term in (2), which after
subtracting mean values and ensemble averaging yields a nonvanishing contri-
bution. Its vertical component can conveniently be written as grad pturb with
pturb ≈ ρw2. If we account for pturb in a stellar model, the structure of (13) can
be retained even in the fully compressible case after appropriately renormaliz-
ing p and g [27, 28], thus p = pgas +prad +pturb. Knowing pturb is necessary for
accurate models of the surface layers of stars which have convective envelopes

Fig. 2. Solar granulation in a magnetically more quiet region during activity max-
imum, as observable at wavelengths of the G-band (∼ 430 nm) caused by the CH
molecule. This figure is part of a much larger image taken with the KIS/VTT in-
strument at Obs. del Teide, Tenerife, by Oskar von der Lühe, Kiepenheuer-Institute
for Solar Physics, and reproduced here with his kind permission
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and whenever dynamical phenomena are of interest for which pressure acts
as a restoring force. This includes the p-mode oscillations occurring in our
Sun (see [5, 68] and references in [45]). The quantity w2 can be computed
within most convection models, but physically well-defined and numerically
robust generalizations of (13) are more difficult to derive than models which
only account for Fconv. Thus, pturb is not included in the standard mixing
length model [17, 71, 137] despite pturb/p reaches maximum values of ∼ 14%
in numerical simulations of solar granulation [109, 110] and even ∼ 35% in the
same type of simulations for hotter stars with surface temperatures ∼ 7300 K
instead of just ∼ 5800 K [131]. Fortunately for stellar evolution theory, these
large deviations are confined to a rather small layer near the stellar surface.

In addition to Fconv, Fkin and pturb, which change the thermal structure
of the star, there is another by-product of convection which influences stellar
evolution: the mixing of stably stratified layers next to convection zones, called
overshooting in stellar physics, but known as entrainment in the geophysical
sciences (cf. Fig. 1 and Sect. 1.2). Heuristic models of this process have found
limited success based on tuning model parameters to reproduce a set of test
data [30, 42]. Unfortunately, those parametrizations are not very robust and a
more detailed modelling is required (see Sect. 6 and the chapter “Turbulence
in Astrophysical and Geophysical Flows”).

Each of the physical processes introduced here can be studied for the solar
convection zone, which provides a good example for explaining the strategies
used and the difficulties encountered in modelling stellar turbulent convection.

2 Turbulence in the Solar and in Stellar
Convection Zones

The solar convection zone is a rotating, approximately spherically symmetric
shell. Its mean density changes from about 0.2 g cm−3 at the bottom to some
3.2 ·10−7 g cm−3 near the surface. The mean temperature changes from about
2.15 · 106 K near the bottom to about 6200 K near the top (see Tables 2.4 and
6.1 in [128] for a typical solar model and Chap. 18 in [137] for experimental
tests of this structure based on helioseismology). This implies a contrast in
ρ of 625,000:1 and a contrast in T of 350:1 in a domain extending over 30%
of the solar radius. Convective velocities increase from a few dozen m s−1 to
about 2 . . . 3 km s−1, which corresponds to an increase in Mach numbers from
∼ 10−4 to about 0.3 (cf. Table 6.1 in [128] and Fig. 18.11 in [137]). Figure 2
shows an image of the solar surface in visual light. Bright elements, the solar
granules, are seen embedded in a network of less bright (and due to the finite
image contrast actually dark) intergranular lanes. Following approximately
Stefan’s law (emissivity equals σT 4) the bright elements correspond to high
temperature regions. Dark areas indicate regions of lower temperature. The
white features seen in parts of the intergranular network are regions of en-
hanced magnetic activity (plages). There are also a few very dark regions
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(pores) which are again related to magnetic activity. Still, most of the image
is covered by magnetically quiet, ordinary granulation.

2.1 Surface Granulation and Turbulence

We turn to the notion that astrophysical flows are “turbulent almost by def-
inition”, as the non-linear inertial forces resulting from div [ρ(v ⊗ v)] in (2)
completely dominate over their viscous counterparts. Do huge values of Re
really mean that astrophysical flows always look disordered and chaotic with
many small scale structures which we know from laboratory experiments on
the flow behind a grid? Nothing like that is visible in Fig. 2. How should
we interpret this picture? Clearly, with U of the order of 2 . . . 3 km s−1, L
some 1200 . . . 1300 km, and ν taken to be about 1740 cm2 s−1, we obtain that
Re ≈ 1.3 · 1010. Here, the average convective velocities U at the solar surface
are obtained from the analysis of spectral line broadening in the visual light
observed from the Sun or from numerical simulations [4, 128]. L is the aver-
age size of solar granules (Chap. 1.3 and 6.3 in [128]) and the length scale for
which the kinetic energy of the flow is close to its maximum. The value for ν is
taken from [48] (Tables 1 and 2 for a layer at the surface with T = 5660 K). If
instead we take L to be the depth of the solar convection zone (∼ 180,000 km),
U as the average velocity found in solar structure models (∼100 m s−1), and
ν from Chapman’s [40] relation ν[cm2 s−1] = 1.2 · 10−16 T 5/2ρ−1 for fully
ionized gases for T and ρ at the bottom of the solar convection zone, we ob-
tain Re ≈ 1014, though this value is more appropriate for the lower part of
the convection zone. Could an increase in resolving power of solar telescopes
change the laminar appearance of the granules? A comparison of Figs. 1 in
[116, 122, 127] based on observations with telescope apertures of 30, 50 and
100 cm, respectively, corroborates the impression we gain from Fig. 2. Could
it be that the physics accounted for in the definition of Re is not sufficient to
describe the observed properties of solar granules?

We first note that solar granulation is a surface phenomenon. The granules
are located on top of a convection zone most of which is nearly perfectly adia-
batic and where photons can travel distances of only a few cm. The top of the
granules behaves differently, since the average stratification becomes stable
(∇−∇ad ∼ 0) and photons are emitted into space. The statistical properties
of the flow at the solar surface are certainly not invariant under translation and
rotation in space at the scale L. Hence, there is no physical reason why Kol-
mogorov scaling v(�) = v(L) (�/L)1/3 should hold for velocity fluctuations v(�)
at � ∼ L, since some of its premises are not fulfilled (cf. the chapter “An Intro-
duction to Turbulence”). Indeed, L is within the length scale range of kinetic
energy injection into the system. The latter results from the negative buoyancy
of the gas cooled at the surface [124]. Thus, L is not contained in the inertial
range described by Kolmogorov scaling and solar granules should not reveal
the signatures of fully developed turbulence. Rather, they are an excellent
example for coherent structures. The convective instability as defined in (18)
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is not directly related to turbulence, but to a special kind of Rayleigh Taylor
instability of the fluid which drives the flow because light (buoyant) fluid un-
derneath heavier one is unstable to small perturbations (see the chapter “An
Introduction to Turbulence”). Turbulence comes in only as a secondary in-
stability in case of large enough driving of the flow. This driving is quantified
by the Rayleigh number, which relates the product of viscous and conduc-
tive time scales to the square of the buoyancy time scale: Ra ≡ τviscτcond/τ

2
b

(cf. Chap. III in [85]). Near the surface of the granules Ra ∼ 1010. Ra rises
rapidly beyond 1020 for the solar interior. This illustrates the dominance of
buoyancy over viscous and conductive effects in solar convection as well as
the extremely strong driving experienced by the fluid. In the end this results
in huge values of Re which can tempt researchers into the fallacy that the
solar granules themselves are an indicator of fully developed turbulence. The
boundary layer phenomenon of solar granules has sometimes been studied
with the picture of a Kolmogorov cascade in mind. Indeed, one can formally
take the Fourier spectrum of kinetic energy, as derived from observations, and
try to find a scaling E(k) ∼ k−5/3 as an indicator for a Kolmogorov spectrum
E(k) = CK ε2/3 k−5/3 (CK is the Kolmogorov constant, ε the dissipation rate
of turbulent kinetic energy, k = 2π/l the wave number – see also the chapter
“An Introduction to Turbulence”). However, current solar observations only
resolve scales l � 0.05 . . . 0.1L. Thus, any detection of Kolmogorov scaling at
such coarse resolution should be considered as possibly spurious or acciden-
tal. Similar holds for analyses of numerical simulations of solar granulation at
such resolution (we return to this point in Sect. 4.2). One has to keep these
limitations in mind when comparing the following independent explanations
that have been suggested for the ‘laminar’ appearance of solar granules.

For ordinary granulation one can neglect rotation and magnetic fields.4

But there are two important physical facts which cannot be neglected. First
of all, the fluid near the surface is extremely stratified. Density changes by a
factor of 1000 from layers which are transparent in the visual solar spectrum
down to layers which are opaque (cf. Table 4.1 in [128]). Since that occurs
within less than 1000 km (and thus < L) which can be traversed by the fluid
within two or three multiples of the time required for a sound wave to do so,
a dramatic expansion of upwards rising fluid and an equally dramatic com-
pression of downwards sinking fluid is expected to occur. Compressibility is
not represented in the comparison of inertial to viscous forces, Re = (UL)/ν.
Secondly, fluid reaching the observable solar surface is subject to strong (ra-
diative) cooling. Fluid rising up is thus expanded, smoothed out, cooled at
the surface and then advected downwards again, with turbulence produced
mostly in the downdrafts. The latter has little chance to reappear at the sur-
face again. In astrophysics, this picture of downdrafts driving convection was
developed in [101, 123] and further refined in [102, 124, 125]. It applies to

4 Rotational forces are small compared to buoyancy at granulation length scales L
and magnetic fields sufficiently weak in magnetically quiet regions (cf. [128]).
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the simulation discussed in Sect. 1.2. In meteorology the role of heating vs.
cooling at the boundary was discussed in [92] (see also for further references).

Note there is a practical problem when probing small scales in stellar sur-
face flows. Most photons we observe at a given frequency f originate from
layers which are just about to become optically thick and provide the opti-
cal surface at frequency f . Layers further below are optically thick and hence
shrouded by the optical surface. Layers above it are transparent (optically
thin). There is little information from photons on layers transparent to them,
since by definition there is hardly any interaction between the gas and such
photons.5 The length scale lf ∼ (κfρ)−1 along which a layer becomes opti-
cally thick at f sets a lower limit for scales l which can be probed by simple
observational means. For l < lf at any layer above the optical surface vari-
ations in intensity are difficult to detect because of the transparency of the
gas. Temperature differences at scales l < lf , which might have been advected
from layers further below, are subject to strong smoothing due to radiative
cooling [121]. Thus, small-scale temperature fluctuations have a very short
cooling time scale (∼ 0.1 s for structures of size l ∼ 10 km). In turn, Doppler
broadening due to local velocity fluctuations is difficult to trace, if the lat-
ter are smaller than 1 km s−1, because the thermal Doppler broadening at
solar photospheric temperatures is much larger. Hence, velocity fluctuations
present on scales l � lf may remain undetectable.6 Note that one can get
partially around this problem and attempt to increase vertical resolution by
considering various f for which photons predominantly originate from differ-
ent geometrical depths (cf. also [4]) and compare them differentially. However,
since for any f the observations stem from an entire depth range ∼ lf , probing
small-scale velocity fields this way is difficult, too.

In an earlier proposition [116] it was argued that turbulence at unresolved
scales acts on the larger, observed scales by giving rise to a turbulent viscosity
νt(l). This enhances the molecular viscosity ν such that the Reynolds number
at L is actually Re = (UL)/(ν + νt(l)) ∼ O(1). While compressibility and
(radiative) cooling have been used to argue that even at very high Re the flow
does not have to be fiercely turbulent at the top of the granules [124, 125],
the concept of turbulent viscosity in [116] aimed at reconciling observations
with the expectation of a highly turbulent flow at very high Re. This argu-
ment was completed in [31] by demonstrating that the non-linear interactions
in a turbulent flow, which originate from the advection term div [ρ(v ⊗ v)]
in (2), indeed lead to a renormalization ν → ν + νt for length scales close to

5 In the present discussion we neglect collective effects such as radiative pumping,
excitation of atoms by photons originating from hotter, underneath lying layers.
Those are difficult to use as tracers for the velocity field.

6 When flying with an aeroplane, we can experience this phenomenon, too. Clouds
are readily identified as regions of high turbulence (as confirmed by the bumpy
feeling when flying through them), but the consequences of turbulence are also
encountered in “clear” sky (see [21] for the underlying physical mechanism): visual
light does not warn us about disturbances which are transparent to its photons!
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the maximum of turbulent kinetic energy in the flow. Since in the turbulence
model used in that work the up- and downflow motions in a convection zone
are just a part of the turbulent flow field, the maximum of kinetic energy
within the model is also at the scale of granulation. This motivated the con-
clusion that an effective renormalization of ν takes place at the required scales
∼ L. The bottom line of this argument is that while the absence of non-linear
interactions implies the presence of laminar structures, the latter are expected
to exist at scales L around the maximum of turbulent kinetic energy also in
a turbulent flow. This is in agreement with the definitions of turbulence and
coherent structures introduced on p. 49. Although the argument leaves out
the influence of compressibility and radiative cooling, it also demands a modi-
fication of the meaning of Re = (UL)/ν for the observed scales ∼ L. But while
compressibility and radiative cooling are directly accessible to observations, it
has to rely on the applicability of its underlying ideas to solar granulation, as
scales l � lf escape direct detection. Note that the picture of a turbulent flow
behaving like a laminar flow at scales ∼ L is not identical to the picture, which
claims granules to be part of a cascade initiated at the bottom of the solar
convection zone that neglects the role of cooling at the surface and expansion
(contradicted by [123]).

There may be another process which might enhance the laminar-like prop-
erties of solar granulation which so far has found little attention. In [48] it was
first pointed out that the second or bulk viscosity term, ζδikdiv v, which ap-
pears in (2) via (5), should not be neglected for the surface region of the
solar convection zone, which is generally done in stellar convection modelling.
As is discussed in [83] (Chap. VIII, § 81), ζ can become large compared to
the usual molecular viscosity η, if slow relaxation processes, for instance var-
ious chemical reactions, interact with the flow, which in turn leads to a large
dissipation of kinetic energy. In [48] such a possible source was identified to
be the finite relaxation time characterizing the exchange of the translational
energy of electrons and the internal binding energy of electrons in hydrogen
atoms. Calculations for a pure hydrogen gas show that ζ/η can become as
large as 107 near the optical surface, though this ratio rapidly drops to less
than 100 already 1500 km further below (Table 2 in [48], H is the dominant
source of e− for the top of the solar convection zone). If shear (the first two
terms in (5)) and compressibility effects (the terms in (5) depending on div v)
have comparable size, then the Reynolds number could alternatively be writ-
ten as Recomp = (UL)/(η/ρ + ζ/ρ). Recomp is 3000 instead of 1.3 · 1010 for
the surface of solar granules. This is still a value usually characterizing a
turbulent flow, but together with the aforementioned effects it may enhance
the solar granules to behave more like laminar flow as far as compressibil-
ity effects are concerned. Thus far, no studies appear to have been published
which further investigate the possibility of a large bulk viscosity at the solar
surface.
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2.2 Turbulence Inside the Solar Convection Zone

Of course, there is no reason why the situation inside the Sun, below the
photosphere, should be the same as on its surface: the optically thin scenario
no longer holds and the stratification effects become smaller. In addition, ζ
strongly decreases [48]. Figure 3 shows how the entropy changes from the pho-
tosphere to the quasi-adiabatic stratification inside the convection zone in a
2D simulation [100] performed at very high resolution (an order of magnitude
higher than for the observations in Fig. 2 even when averaging over several
grid points of the simulation). Note the very smooth and sharp surface within
the top layers, which indicates the entropy jump, the super-adiabatic peak just
below the observable photosphere (similar to Fig. 1). Visible light originates
from the smooth layers above that surface. In turn, the layers underneath are
fiercely turbulent and show all the shear instabilities expected from a (2D)
flow at high Re number. Shearing inevitably occurs between strong down-
flows (indicated in Fig. 3 by low-entropy material advected from the surface)
and the surrounding regions of more gentle upflows. To catch these flow fea-
tures in a granulation simulation requires sophisticated numerical procedures
to which we return in Sect. 4.2. One should keep in mind that 2D simula-
tions can only provide some first guidance on what to look for in more detail
in 3D: the properties of (1), (2) and (3), in particular with respect to the
redistribution of turbulent kinetic energy, change in a fundamental manner
by adding a third spatial dimension (see [85] and Sect. 4.1). Nevertheless, a

Fig. 3. Snapshot of entropy in a simulation of solar granulation in 2D at a very high
resolution of 1.8 km vertically and 2.8 km horizontally. The domain is 2Mm deep
and 2.6 Mm wide and embedded in a larger region 3Mm deep and 11.2 Mm wide
simulated at four times lower resolution [100]. Low values of entropy are indicated
in dark grey, intermediate values in very light grey and high values in medium grey,
a scale chosen to enhance grey scale image contrast
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similar difference between smooth surface layers and small scale turbulence in
the interior is found in (see also http://www.univie.ac.at/acore/gallery.html)
high-resolution (7× 102 km3) 3D simulations confirming a view voiced at the
dawn of stellar convection modelling: the appearance of convection at the
surface and inside the Sun does not have to be alike [15].

2.3 Turbulence at Different Scales: Micro- and Macroturbulence

Long before numerical simulations of convection became feasible the phe-
nomenological concepts of microturbulence and macroturbulence were devel-
oped in observational stellar spectroscopy [84]. To explain extra broadening
observed for spectral lines of “intermediate strength” in cool stars (including
our Sun) the concept of microturbulence was proposed. It postulated an en-
hanced Doppler broadening of such spectral lines due to turbulence on length
scales l � lf . Typical values derived from solar spectra are ξt ∼ 0.85 km s−1

[4] and assume a simple, Maxwell–Boltzmann distribution of “fluid elements”
of size l independent of depth. Whether this effect is a good tracer for tur-
bulence at unresolved scales is rather uncertain. Synthetic spectra calculated
on the basis of 3D numerical simulations of solar granulation allow very accu-
rate matches of spectral line strengths and line profiles [4] without invoking a
non-zero ξt. Moreover, in stellar spectroscopy ξt is commonly used as a fudge
parameter also for other physical mechanisms held responsible for extra line
broadening. However, the necessity to introduce a non-zero ξt in an analysis
clearly indicates the presence of an extra broadening mechanism and if the
lower parts of a stellar photosphere are convectively unstable, convection is
an obvious suspect to be held responsible for that broadening.

High resolution spectra of cool stars with sufficiently small projected rota-
tional velocity, including those obtained from our Sun, also allow the detection
of spectral line profile asymmetries. These are commonly related to the asym-
metry between up- and downflows, between hot and cold flows. For the Sun
such flows are directly observed and result in the solar granulation (Fig. 2).
The flows lead to line profile distortions also in spectra averaged over the
entire disk of an object, i.e. the usual type of data we collect for stars other
than the Sun. Since the line profile is affected here by processes on scales
l > lf , and even l > L, the designation macroturbulence was proposed for it
in stellar spectroscopy. One of the main tests for numerical simulations of solar
granulation is indeed the recovery of line profiles without having to invoke an
ad hoc broadening mechanism operating on such scales. Recent simulations
are able to do so [4]. As discussed above, this cannot rule out completely ve-
locity fluctuations on a scale l � lf , but the successful results with ξt = 0
set some upper limits on their size and relevance for spectral line formation.
We note here that ξt > 0 increases the effective opacity κ in the photosphere
by increasing the strength of some of the absorption lines [84]. Hence, the
thermal structure of a convective photosphere differs from a radiative one
also because of this feedback mechanism between the radiation and the flow.
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Modelling a stellar photosphere with a non-zero ξt within a stellar structure
calculation attempts to account for some of this feedback in the framework
of simplified, horizontally averaged models. In contrast, stellar spectroscopy
treats macroturbulence as a purely geometrical effect that does not change
the thermal structure of the photosphere. As a means of probing turbulence
in stellar atmospheres, both concepts have to be used very cautiously.

2.4 Probing the Interior of Turbulent Convection Zones in Stars

As we have seen, convective stellar photospheres are rather peculiar systems.
One should bear in mind that their governing equations are those of RHD
(and even RMHD) and not just the hydrodynamical equations (1), (2) and
(3). Numerical experiments as shown in Fig. 3 imply that conclusions drawn
from the properties of visible surface layers may not be applicable to the layers
underneath. How can we probe stellar turbulent convection zones inside stars?
A common requirement for models of entire stars is to successfully predict
integral quantities. For instance, an evolution model of a star of one solar
mass with the chemical composition of our Sun should recover the radius
and luminosity of the Sun at its present age. Unfortunately, it is rather easy
to reproduce these quantities by adjusting parameters in convection models
and insufficiently known input quantities such as the initial helium content
[62, 71, 137]. Another option is to consider samples of stars such as binary
pairs [59], open clusters [2], or even entire classes of stars [42]. For all those
methods the systematic effects restrict the constraints which can be put on
stellar models. Ultimately, all those tests are limited by the fact that different
internal structures can recover the same global property which in the end
allows a model to predict the correct global quantity for the wrong reasons.

The main alternatives to this type of approach are helioseismology and,
more recently, asteroseismology [43]. Both use the frequencies, amplitudes and
life times of oscillations of the Sun and other stars, respectively, to conclude
on the internal structure of the pulsating object and on its global properties.
The oscillations are measured by the usual observational methods of astro-
physics (flux variations from optical photometry and Doppler shifts and line
profile variations from spectroscopy, see [72] for some examples and [55, 56] for
a review on the physics of stellar oscillations and their role in astrophysical
research). Stars suitable for seismology, such as our Sun, oscillate simulta-
neously in many different modes. If the restoring force of the oscillation is
dominated by pressure and the mode is akin to a standing acoustic wave, the
designation p-mode is used [45] to distinguish them, for instance, from stand-
ing gravity waves with buoyancy as the main restoring force (g-modes). The
key distinction to the aforementioned global methods is based on the possi-
bility to compare the properties of different p-modes. Each of them has its
own acoustic cavity, hence there are regions inside the star which differ in the
excitation, damping and propagation properties for different modes. By com-
paring the results for two different modes we can learn about the differences
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between the associated resonant cavities and in particular about the region
probed by one mode but not by the other [43, 72]. A large set of knowledge has
been assembled this way about our Sun [74] including evidence of subsurface
flows, measurements of the depth of the solar convection zone, overshooting
and mixing underneath it, and the differential rotation pattern in its interior.
We note that although seismology essentially measures sound travel times
(and through comparing different modes also local sound speeds), the ther-
mal structure, the mean values of T (r), P (r) and ρ(r), can be constrained
fairly well, too, at least in the solar case: physically plausible uncertainties in
the equation of state [3, 10] (and opacities [10, 86]) leave only limited room
for changes in the model structure to match an observed oscillation pattern.
Thus, helioseismology can be used to approximately recover the solar struc-
ture [43, 74] and set tight constraints on solar models. Asteroseismology is
more limited in capabilities since it has to rely on modes which are also de-
tectable from averages over the entire stellar disk, while helioseismology can
be performed both ‘globally’ and ‘locally’ (using resolved images of the solar
surface). Nevertheless, recent advances in observations have allowed putting
some constraints on the interior of stars other than the Sun [72] and in cases
such as oscillating close binary stars asteroseismology can also be combined
with more traditional methods [1].

The mechanisms actually driving stellar oscillations can be probed by the
means of helio- and asteroseismology, too. Stochastic excitation by turbulent
convection [61] has been suggested to drive the pulsations observed in our Sun.
This mechanism is now commonly accepted as the cause of solar oscillations
(cf. the extensions of this idea in [5, 6] and the summaries in [44, 45, 69]).

Since solar oscillations are so tightly related to turbulent convection, they
offer possibilities for probing the predictions for Fconv, Fkin, pturb, and over-
shooting from models and simulations of convection. The temperature gra-
dient can be probed, since a change in speed of sound modifies sound travel
times (or from a different point of view the size of the resonant cavity for the
oscillation modes) and hence the mode frequencies change, too. Because the
actual temperature gradient in a convective layer is a consequence of both ra-
diative transfer (Frad) and convective energy transport (the sum of Fconv and
Fkin), variations in ∇ correspond to variations in Fconv (cf. also the discussion
of Eq. (20) and the derivation in [27, 28]). In [12] it was demonstrated that
the new convection model suggested in [32, 33] yields improved predictions
of solar oscillation frequencies. That model differs from the standard mixing-
length model [15, 17, 137] of stellar evolution theory by taking into account
that the convective energy transport has contributions from velocity fluctu-
ations distributed over many different length scales rather than from just a
single mixing length �. As a consequence, the model predicts a very rapid
transition between regions of inefficient convection (where Frad 
 Fconv) and
efficient, adiabatic convection (with Frad � Fconv). This rapid transition in
energy transport capability yields very steep temperature gradients (large val-
ues of ∇−∇ad) near the solar surface [32, 33, 95] compared to the standard
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model [32, 33, 95] and numerical simulations of solar granulation [109, 110].
Remarkably, numerical simulations also yield an improvement [109, 110] sim-
ilar to the model of [32, 33] in spite of much flatter average temperature
gradients. It is interesting to check Figs. 1 and 3 in this context: note the
much steeper gradient in the updraft region already discussed in Sect. 1.2
and the large fluctuations of the temperature gradient (averages over up- and
downflows) and entropy along the horizontal layers which define the solar sur-
face. This horizontal inhomogeneity averages out locally steep gradients (cf.
Figs. 13 and 14 in [124]). The improved agreement with helioseismology in
case of [109, 110] compared to the standard mixing length model originates
mostly from the fact that the simulations naturally include pturb and inho-
mogeneous cooling at the surface. Flux blocking by spectral lines in the solar
photosphere, which is only included in [110], appears to play a more subtle
role, since both [110] and [109] find comparably small differences from obser-
vations. The role of pturb is to support a lower gas pressure and mass density
at a given T . This pushes the photosphere further upwards [110], increases
the size of the acoustic cavity and lowers the frequencies compared to the
standard model. In the simulations pturb is much more efficient in doing so,
because a significant pturb/ptot is found at the point where the stratification
becomes locally stable (∼ 5% as from Fig. 3 of [110]), while local convection
models including [17, 32] force both Fconv and pturb to be zero at that point.

Can helioseismology tell the difference? Since pturb allows hydrostatic bal-
ance for a given temperature profile with a smaller amount of mass (both ρ
and pgas are lower than if pturb = 0), the mass contained near the surface
is reduced. This changes the pulsation amplitudes (as well as excitation and
damping rates) of the fluid (cf. [69] and references therein) and is hence ac-
cessible to helioseismology. In [113] it was found that the underestimation of
excitation rates by the standard mixing length model [17, 137] is considerably
reduced for the new convection model suggested in [34], which is a refined
version of the model of [32, 33]. This improvement comes in addition to the
much smaller difference with observed pulsation frequencies compared to the
standard model. However, a clear discrepancy remained for pulsation modes
which predominantly originate from layers where pturb is large. On the other
hand, numerical simulations such as those in [110] have been found to agree
with the data to an acceptable level also for the excitation rates of p-modes
mostly driven near the solar surface [14, 112]. Hence, helioseismology is indeed
capable to probe predictions for pturb and ∇ simultaneously. Is it possible to
separate Fconv from Fkin, as only the sum of both is related to the tempera-
ture gradient? Because Fkin crucially depends on the flux of vertical kinetic
energy ρw3/ρ and thus also on the skewness Sw = w3/w2

3/2
, this relation

may be probed by investigating the dependence of pulsation frequencies and
amplitudes on the skewness Sw (see Sect. 1.3 for definitions). Indeed, it has re-
cently been found [13, 14] that Sw is a key ingredient for accurate predictions
of observed excitation rates of solar p-modes.

Overshooting below the solar convection zone has been probed with he-
lioseismology, too (see [7, 94, 111], e.g.). Constraints can be set on both the
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extent of the region where ∇ �= ∇rad as well as on the change in chemical com-
position in the entrainment region and also inside the convective zone itself
[8, 9]. In all those tests the fact used is that changes in temperature gradients
and chemical composition (or in a more crude sense, mean molecular weight)
also modify the travel times and other propagation properties of sound waves.
Helio- and asteroseismology thus have become the most important techniques
to probe our models and simulations of convection inside stars.

3 Modelling and Simulating Stellar
Turbulent Convection

3.1 Convection Models for Stellar Astrophysics

Convection models predict ensemble-averaged quantities which define the
mean structure of a star (such as T (r)) and describe the convective trans-
port (Fconv, etc.). As there is no ab initio procedure known how to derive
dynamical or stationary limit equations for ensemble averages from just the
hydrodynamical equations (1), (2) and (3), any model used in astrophysi-
cal calculations has to rely on additional assumptions which each have to be
tested. The general validity of such tests is an important issue, since a stellar
evolution model which predicts the correct radius of the present Sun may fail
to predict the radius of the Sun on the red giant branch ∼ 5 billion years from
now or on its pre-main sequence track ∼ 4.6 billion years ago (cf. [93]). Some
widely used models of turbulent convection have already been mentioned in
Sect. 2.4. The main drawback of this class of models is their dependence on the
assumption of locality, which implies among others that injection of energy
into and dissipation of energy from the flow is a local process. The existence
of overshooting (cf. Fig. 1) demonstrates that in general this cannot be valid.

A more advanced methodology to compute ensemble-averaged models of
turbulent convection is the Reynolds-stress approach. Its underlying idea is
to construct (dynamical or stationary limit) equations for the higher order
moments of the independent variables of (1), (2) and (3) from the basic equa-
tions, ensemble average them, and close the resulting equations with addi-
tional physical assumptions. One advantage of these models is their capability
to account for nonlocality. An introduction into this methodology is given in
the chapter “Turbulence in Astrophysical and Geophysical Flows” (see also
the chapter “Turbulence in the Lower Troposphere: Second-Order Closure
and Mass-Flux Modelling Frameworks”). Pioneered in astrophysics by [138]
it has found rapid development only more recently [26–28, 35]. In this area
astrophysics owes a lot to the progress made in the atmospheric sciences (cf.
[36, 41, 65, 66]). Independent developments are less frequent (the most sophis-
ticated ones are probably those of [63, 64, 139]). This is not only because the
atmospheric sciences have a longer tradition in the field (compare [144] with
[138]). A different parameter space is encountered in stellar convection, while
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only a limited degree of complexity is acceptable for applications such as stel-
lar evolution calculations (cf. [137]). Suitable data for challenging the models
with helioseismology and sufficiently realistic numerical simulations have be-
come available only more recently. Direct tests with such observational data
[140–142] and numerical simulations [76, 77, 79–81] are now being performed
in a step-by-step process to identify which parts of these models work and
which ones do not. Because of their important role in providing a comple-
mentary set of data for probing turbulent convection models and for studying
stellar convection by numerical experiments, we now turn to hydrodynamical
simulations of turbulent convection. We discuss the basic concepts underlying
this approach in detail in the remainder of this section and in Sect. 4.

3.2 Hydrodynamical Simulations of Turbulent Convection

Numerical simulations of convection solve some variant of the hydrodynamical
equations, say (1), (2) and (10), for a chosen domain, the simulation box or
volume. Its extent is characterized by its linear dimensions Hi in each spatial
direction i. In astrophysics the simulation box often has a simple geometrical
shape which is chosen with respect to a coordinate system appropriate for the
physical problem. The simulation volume is split into a finite number of dis-
crete volumes which in turn may be represented by grid points, finite elements,
orthogonal basis functions or other mathematical means [25, 105, 107, 129].
If these smallest units are geometrically regular, they can easily be character-
ized by a grid resolution hi along the direction i (the volume taken by such a
resolution element may be used as a suitable measure, too). The hi may all be
of the same size in which case Ni = Hi/hi is the number of grid points or cells
per direction. The hi define the minimum length scale explicitly accounted
for by the simulation. Boundary conditions for the hydrodynamical equations
are specified with respect to the physical problem and the finite simulation
volume. One or just a few initial conditions are selected and numerical solu-
tions are studied for those choices. Initial and boundary conditions have to
be discretized consistently together with the hydrodynamical equations and
the simulation volume to obtain a finite system of (algebraic) equations with
a well-defined solution for a finite time t [107]. Depending on the physical
problem it may be necessary to neglect the initial part of the simulation
run in subsequent analyses to avoid artefacts (transient solutions) introduced
by a peculiar choice of initial conditions. Such relaxation ensures that the
physical system has essentially “forgotten” its initial conditions. Statistical
evaluations of time averages of the simulation can be made from that point
in time, trel, onwards to compute ensemble averages under a quasi-ergodic
assumption (all regions in phase space are visited according to their real-
ization probability). Note that typical solutions are not known beforehand
as this would require an exact statistical theory for the solutions of the hy-
drodynamical equations. Quite often, experimental data or simplified models
are used to provide some guidance for shortening the initial relaxation time
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scales. Unless stated otherwise we assume that Hi = Hj = H, hi = hj = h
and N = Ni = Nj (i and j represent each of either two or three possible
directions). Hence, both the box and the discretization (grids, cells, etc.) are
regular. As a benefit we can link the resolution of the simulation, h, the re-
solved length scales, � and the number of grid points per direction, N , in a
simple way avoiding technical difficulties.

If we use hydrodynamical simulations to study stellar convection zones,
we have to face a number of restrictions. The most basic one is introduced
by the huge spatial extent of stellar convection zones and the fact that the
non-linear terms in (1), (2) and (9) always dominate over those containing
the tensor viscosity π, (4) and (5), which results in the huge values of Re
quoted in Sect. 2. It is instructive to consider the simple advective–diffusive
equation, also known as convection–diffusion equation [129], to understand
the consequences of a high Re for turbulent flow simulations. This equation
reads

ut + aux = buxx, (21)

where a and b are positive constants (advection velocity and diffusion coeffi-
cient), u is the velocity, x the spatial coordinate and t denotes time. As a one-
dimensional, linear problem it already demonstrates the necessity of trading
enhanced (numerical) viscosity against (insufficient) resolution. Equation (21)
can be approximated numerically by finite differences. Taking equidistant
steps Δt in time enumerated by an index n and a grid of points which have
equidistant spacing Δx and are enumerated by an index m one can solve

vn+1
m − vn

m

Δt
+ a

vn
m+1 − vn

m−1

2Δx
= b

vn
m+1 − 2 vn

m + vn
m−1

(Δx)2
(22)

instead of (21) provided that (bΔt)/(Δx)2 � 1/2. In the limit of Δt → 0 and
Δx → 0 this yields a consistent and stable and, hence, convergent approxima-
tion for (21) on a grid [129]. If b is very small, this stability constraint imposed
by the size of b is not very restrictive, because Δt can still be chosen quite
large. That is exactly the situation we find in a high Re flow. However, the
solutions of (21) are oscillatory [129] unless in addition Δx � 2 b/a, i.e. the
Reynolds number at the scale Δx (the cell Reynolds number) is less than 2.
The combination of both conditions is in fact very restrictive, if the advec-
tive term aux dominates over the diffusive one, buxx. It demands nothing less
than resolving all spatial and temporal scales down to the scale of viscous
dissipation processes (at which buxx dominates over aux). In Eq. (22) the
coupling between different scales � � Δx occurs through a statistical, linear
model (buxx) that is not represented properly for Δx > 2 b/a. In Eq. (2)
both the non-linear term div [ρ(v ⊗ v)] and the term divΠ introduce simi-
lar constraints on resolution. Solutions of the full hydrodynamical equations
(1), (2) and (3) fulfilling all the resolution requirements are called direct nu-
merical simulations. They require to resolve the Kolmogorov (dissipation)
length scale ld = LRe−3/4, as obtained from the Kolmogorov scaling relation
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l/ld ∼ Re(l)3/4 for turbulent flows in three spatial dimensions (see the chapter
“An Introduction to Turbulence” and the chapter “Turbulence in Astrophys-
ical and Geophysical Flows”). Values for ld between ∼ 1 cm and ∼ 4 cm are
obtained for the solar convection zone with L and Re as quoted in Sect. 2.1.
Pure ignorance towards this constraint does not help: contrary to the case
of (21) numerical solutions of (1), (2) and (3) not resolving ld do not just
oscillate, but blow up because of the non-linearity of the advective terms in
(1), (2) and (3). The number of grid points required by such a constraint
makes this approach useless for simulations of stellar convection with realistic
microphysical parameters, i.e. realistic values of Krad and ν.

The way out of this restriction are large eddy simulations (LES) which
have an affordable number of N grid points or resolution elements along each
direction. They rely on a sub-grid-scale model, numerical viscosity, or hyper-
viscosity to account for the interaction of scales l < h with scales � � h that
are resolved in the simulation. Note that the designation LES is often used in
a more restrictive context. We turn to some of the underlying issues further
below. In any case, cell Reynolds numbers of order unity are achieved by these
methods which limit or avoid oscillations (or even blowups) at the resolution
scale h. One can understand this principle by a different numerical method
for solving (21), the upwind differencing scheme

vn+1
m − vn

m

Δt
+ a

vn
m − vn

m−1

Δx
= b

vn
m+1 − 2 vn

m + vn
m−1

(Δx)2
(23)

which is algebraically equivalent to
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m − vn
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m−1

2Δx
=
(
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aΔx

2

)
vn

m+1 − 2 vn
m + vn

m−1

(Δx)2
. (24)

This scheme is consistent and stable, and hence convergent, if 2(bΔt)/(Δx)2+
aΔt/Δx � 1 and there is no additional condition on the resolution Δx to avoid
oscillatory solutions [129]. This is much less restrictive, if aux is large com-
pared to buxx. The trade-off is an enhanced artificial viscosity, b + (aΔx)/2,
which of course converges to b for Δx → 0. As pointed out in [129], there
is no simple mathematical criterion to decide whether (24) or an oscillatory
solution of (22) is a better approximation to (21) for a coarse grid spacing
Δx. Indeed, we need physical criteria to make our choice! For Eqs. (1), (2)
and (3) the situation is more clear-cut: a numerical solution which is blowing
up is evidently useless, while one that is more viscous may still be useful. The
physical questions we have to ask about such approximations with h 
 ld
are: how much are the properties of the solution modified at the energy carry-
ing scales ∼ L? What is the influence of the different methods on observable
quantities? Are the mixing properties notably changed? Are flows behaving
approximately like volume averages of simulations that have been performed
at higher resolution? With these questions in mind we turn to the different
methods for performing simulations of turbulent convection with � � h 
 ld.
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Hyperviscosity and artificial diffusivity are concepts based on the pseudo-
viscosity methods invented by von Neumann and Richtmyer to stabilize clas-
sical finite difference schemes in the presence of shocks (Chap. 12 in [107]).
Hyperviscosity and most artificial diffusivity methods are obtained by adding
a term ‘similar to viscosity’ to (2) and (3). That term is based on an even
order spatial derivative of the v and front factors which depend on the resolu-
tion h = Δx [47]. Second order derivatives are most common (e.g. [124, 135]),
but higher order derivatives have been used as well [19]. The extra damping
provided by such a term, e.g. νhyp ∼ (∇S) with S =

√
2SijSij for the strain

rate tensor Sij = (∂vi/∂xj + ∂vj/∂xi)/2, affects mostly length scales of a
few multiples of Δx: in wave number space the damping is ∼ k4 due to the
two extra derivatives which appear in the term actually added to Eq. (2),
div ((νhyp

k ∂vi/∂xk + νhyp
i ∂vk/∂xi)ρ/2). A distinction is sometimes made be-

tween damping terms dealing with shocks (νshk) and with effects due to unre-
solved scales (νhyp). This leads to adding a combined term νad = νshk + νhyp

with components that are not necessarily of the same order [124, 135]. Con-
trary to the simplistic approach in (24) these methods do not reduce the
convergence order of the method (and thus accuracy) away from shocks and
scales � 
 Δx are much less affected (see Chap. 5 in [129]). Their goal is not
to mimic sub-grid-scale (h > l � ld) turbulence, but to stabilize the simula-
tion based on an analysis of physical processes which can cause instabilities in
insufficiently resolved calculations. The methods per se have no way of “know-
ing” whether we deal with a turbulent or a laminar flow: gradients which are
steep on a scale � 4Δx are simply smoothed out.

Non-linear numerical viscosity as used in modern shock-capturing schemes
such as the PPM (piece-wise parabolic) method [46] or, more recently, the es-
sentially non-oscillatory (ENO) methods [87, 88, 118, 119] originate from a
very different mathematical framework. They combine higher order accuracy
with the capabilities of Godunov type methods (Chap. 12 in [107]) to re-
produce discontinuous solutions of the hydrodynamical equations. A trade-off
compared to first order methods such as Godunov’s [60] or the simple upwind
scheme in (24) is that small oscillations can occur. However, they remain finite
and (in the case of ENO schemes) of the order of the truncation error of the
scheme, thus maintaining the high approximation order of the scheme even
across discontinuities (see Chap. 14 in [105]). The potential of these schemes
is demonstrated in Fig. 4: artificial diffusivity with standard coefficients of or-
der unity (see [135] for further details and references) is added to the scheme.
This degrades the resolution by about a factor of 4. In turn the simulation run
without artificial diffusivity is qualitatively similar to a calculation at eight
times higher resolution [100] which had added the same type of artificial dif-
fusivity with the same parameters as in the calculation for the right panel of
Fig. 4 (and also for Fig. 3). This demonstrates on the one hand that simu-
lations with artificial diffusivity also converge to a similar flow structure at
high enough resolution. On the other hand, it illustrates how pseudo-viscosity
models can degrade the resolution at small multiples of the grid scale.
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Fig. 4. Weighted ENO 5-th order (WENO-5) scheme of [87] without (left panel) and
with artificial diffusivity (right panel). The resolution of this two-dimensional simula-
tion of solar granulation is 15 km vertically and 23 km horizontally (H.J. Muthsam
and C. Obertscheider, personal communication). Isolines of constant pressure are
shown in a plot of relative density fluctuations

What are the disadvantages of these methods apart from increased com-
putational costs? First of all, physical processes operating on scales l < h
are of course neglected unless accounted for through a sub-grid-scale model
(for instance, turbulent combustion, see the chapter “Turbulent Combustion
in Thermonuclear Supernovae”). A second potential danger is that the non-
linear numerical viscosity can create its own artefacts on the grid scale h, e.g.
small but unphysical oscillations. Instead of adding hyperviscosity to avoid
such problems one can add a very small physical viscosity (scaling up ν) or
use a sub-grid–scale model together with the shock-capturing scheme. There
are different opinions on this point in the literature. One extreme position
is that the intrinsic numerical dissipation of shock-capturing schemes already
mimics the effects of a sub-grid-scale model [18]. This leaves scaling up ν or
decreasing the grid spacing, if a simulation at a given resolution h is unsat-
isfactory. The capability of the PPM scheme to mimic small scale turbulence
has been studied with high-resolution simulations in [104] while [54] claim that
such schemes are too viscous compared to sub-grid-scale models. That notion
is not surprising, since the design goal of shock-capturing has not been the
simulation of turbulence on unresolved scales, but the representation of steep
gradients or discontinuities with affordable grid spacings h. Hence, they avoid
having to introduce an artificial diffusivity term νshk in the calculations, but
not necessarily also νhyp. One should be cautious about straightforward com-
parisons of different tests of turbulence simulations, if they are based on calcu-
lations with different resolution. For instance, [104] use 5123 grid points while
[54] use up to 1283. To resolve shear driven turbulence on an equi-spaced grid
requires typically ∼ 4003 grid points (see Sect. 4.2). Hence, the performance
of the different methods should be expected to be strongly scale dependent!
Consequently, even for the same physical problem the answer to the question
which method is most reliable (or most efficient) depends on the affordable
resolution and the required accuracy. Since physical processes, which change
the dynamics of the flow, may be accounted for with a given number of grid
points N in one physical system, but not so in another, intercomparisons of
methods for different systems have to be considered with even more caution.

Another approach to LES, which is guided by turbulence modelling, is
to use a scheme with little or no numerical dissipation and combine it with
a physical sub-grid-scale model (originally, the term LES was used only for
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this class of simulations). The classical model by [120] is still the most pop-
ular for this purpose. It is based on identifying the dissipation processes not
accounted for due to the grid resolution h with an eddy viscosity which en-
hances the shear-stresses of the velocity field as resolved on the grid. This has
some similarity to the concept of turbulent viscosity mentioned in Sect. 2.1.
In simulations of flows with shocks, an artificial diffusivity (νshk) has to be
added or the coefficient of the model [120] has to be boosted accordingly
[109]. The application of eddy viscosity models to flows with shock fronts has
been criticized, since underlying assumptions such as isotropy at scales l < h
and the existence of a Kolmogorov cascade at those scales do not hold. A
more refined version of this approach is the dynamical sub-grid-scale model
of [58]. It uses information from the flow at different scales � � h to deter-
mine the (empirically defined) parameter of the eddy viscosity model [120]
(see the chapter “Turbulent Combustion in Thermonuclear Supernovae”). We
note here that some researchers consider the designation ‘LES’ only appropri-
ate for simulations which can account for shear driven turbulence or show a
Kolmogorov spectrum (see Sect. 2.1) or another scaling relation for the turbu-
lent kinetic energy in Fourier space for some of the length scales resolved on
the grid. Because such simulations require massive computational resources,
other researchers prefer to call LES also more affordable simulations which
only contain the scales around the maximum of turbulent kinetic energy, even
if the simulation results in this case are more sensitive to the model used for
the unresolved scales. The choice between these two points of view may have
to be left to comparisons with data and simulations with higher resolution.

3.3 Time Integration in Hydrodynamical Simulations

Hydrodynamical simulations of turbulent convection also require numerical
approximations to calculate the evolution of the system as a function of time.
Very few numerical schemes, such as leapfrog combined with symmetric dis-
cretizations in space (centred finite differences, Fourier collocation), do not
alter the amplitudes of purely advective or oscillatory solutions of differential
equations [25, 107, 129]. Such numerical schemes might appear attractive for
the integration of the non-linear advection terms in (1), (2) and (3), because
they only introduce phase errors into the solution. Hence, they are dispersive,
but not dissipative. Dispersivity of a numerical integration method implies
that solution properties at different scales � are propagated with different
phase speed v(�) on the numerical grid. Consequently, waves of frequency f
in the solution of the hydrodynamical equations are propagated with individ-
ual speeds v(f), which gives rise to a phase error and an associated disper-
sion relation [129]. Dispersive errors affect all solution methods for hyperbolic
terms in partial differential equations except for special cases with no practical
relevance. Numerical dissipation of a time integration scheme also provides a
different amount of damping for amplitudes of the numerical solution at var-
ious scales �. This, too, originates from the truncation error of the numerical
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integration scheme and can be minimized by higher order schemes [129]. It
must not be confused with physical dissipation due to viscosity. The latter
converts macroscopic motions into microscopic ones (heat), but does not vio-
late the conservation of (total) energy. A numerical time integration error may
easily violate exact conservation laws, as the latter are integrated only with a
finite accuracy. For higher order methods the dissipative errors may be smaller
than phase errors of lower order methods [107], unless we consider isolated
systems or extremely long integration times. Since purely dispersive schemes
fail for solutions with shocks and also often for non-linear advection with very
steep gradients, some small amount of numerical damping during time inte-
gration is usually accepted in simulations of turbulent flows. From a physical
point of view, this limits the phase space that can be visited by the numerical
simulation and hence the accuracy of ensemble averages for a given Δt.

Most time integration methods used for the non-linear advection terms in
(1), (2) and (3) are explicit. This allows the construction of the next time step
by extrapolations from existing information (the solution given at the current
time or during recent time steps). Moreover, in a compressible flow sound
waves are easily generated. They constrain Δt to follow the time evolution of
a sound wave which travels relative to the flow speed |v| at speed cs between
grid points with a minimum distance of Δx. This is the famous Courant–
Friedrichs–Lewy (CFL) condition [107, 129]. If we are not interested in the
fate of sound waves (or other waves travelling at high speed) and the flow
velocity itself is subsonic (|v| � cs), we have to resort to some form of implicit
time integration. This couples all the grid points of the simulation domain
during the construction of the solution at the new time t + Δt. The coupling
is expressed through large (and in the case of the equations (1), (2) and
(3) also non-linear) systems of algebraic equations. Since their solution is
computationally expensive, there is a threshold which has to be exceeded to
benefit from the less restrictive stability conditions of implicit methods.

Implicit time integration also trades its less restrictive stability conditions
for an increased dispersivity. Close to the stability limit traditional implicit
methods have a much large dispersion error than comparable explicit methods
(cf. the examples given in [129]). This error increases rapidly when increasing
the time steps even further. Hence, care has to be taken, if accurate informa-
tion on waves is to be extracted from a hydrodynamical simulation with large
Δt (see also [129]). The same holds, if Mach numbers |v|/cs of the flow are
close to 1. The mean velocities are close to sound speed in this case and, in
addition, acoustic events such as generation of sound waves by the flow can
easily occur. For such cases implicit integration methods may still be used for
relaxation of the simulation towards a statistically steady state, but explicit
methods are preferred to study the relaxed system [109]. Note that the source
and diffusion terms in (2) and (9) often require implicit time integration.
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4 Realistic Simulations of Stellar Convection

4.1 Choosing Scales: Effective Reynolds and Prandtl Number

Numerical simulations of stellar convection with realistic microphysics (equa-
tion of state, Krad, ν) and a box size H require to include scales � such that
both H > L > h and H > � > h while h 
 ld. How should we define the
characteristic scale of the flow, L, ahead of a simulation? Let us consider the
spectrum of kinetic energy Ekin after Fourier transformation at this point, for
which Ekin =

∫
E(k)dk. In principle, L should be related to the length scale

�max = 2π/k at which the maximum of (turbulent) kinetic energy occurs in
Fourier space, since most of the dynamics of the system is expected to take
place around that scale. The actual horizontal size of the computational box,
Hhor, is not imposing L. It is the other way round, since L results from physical
constraints such as mass conservation, cooling time scale and finite flow speed
(see [124]). Indeed, if L = Hhor, one has to worry seriously about the influence
of horizontal boundary conditions. What about using the vertical depth of the
simulation box, Hvert, or the fraction of the vertical extent which contains the
convective layers (see Sect. 1.2)? The depth of the entire simulation box has
limited meaning, too, since it could be extended arbitrarily into the radiative
layers. This leaves the depth z of the convective layer as a more useful choice.
The depth of the entire convection zone has some well-defined physical mean-
ing, because it defines the maximum vertical scale on which flow structures
are unstable to buoyancy. But this is not an accessible quantity for most sim-
ulations of solar or stellar convection, since H = min(Hhor,Hvert) � z may
be imposed by limited computational resources. Moreover, the total size of z
does not necessarily correspond to the scale �max (certainly not for convection
at the surface of solar-like stars). From that point of view the horizontal size
of the main coherent flow structures, the width of upflows (resp. downflows
or the sum of both) appears to be the most preferable choice for L. It has
already been used in Sect. 2.1. Note that �max of the convective flow becomes
larger for layers further inside the Sun. Hence, the upper layers within a con-
vection zone set the strongest constraints on the extent of the range of scales
L > � > h, while the lowermost convective layers define the minimum size for
Hhor. As we can expect from the discussion in Sect. 3.2, a stable hydrodynam-
ical simulation will have a cell Reynolds number Uh/νeff of order unity. The
effective viscosity νeff includes contributions from the numerical integration
scheme, a sub-grid-scale model (if present) and the kinematic viscosity origi-
nating from molecular processes. Numerical simulations of stellar convection
with realistic microphysics currently all have νeff 
 ν due to L 
 ld. An
LES is thus characterized by an effective Reynolds number Reeff = UL/νeff

(also called numerical Reynolds number, but the exact meaning varies). The
amount of numerical viscosity is difficult to quantify. Since νeff is scale de-
pendent, the naive estimate Reeff = UL/νeff = (L/h)(Uh/νeff) � (L/h) is
far too pessimistic, because νeff → ν if Reeff → Re. For simulations in 3D
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(three spatial dimensions) one can redefine Reeff to account for this scale
dependency via

Reeff ≈ (L/h)4/3 (25)

assuming a Kolmogorov-like scaling l/ld ∼ Re3/4 for L � l � ld (cf. Chap. VI.6
in [85]). Because this scaling has its own region of applicability (see the chap-
ter “An Introduction to Turbulence”), (25) should only be considered as an
estimate. If a flow is restricted to two spatial dimensions, vorticity is conserved
in a reference frame following the fluid motion [11]. In this case the dynamics
is quite different: turbulent kinetic energy is preferentially transferred to large
scales rather than small ones as in 3D, while enstrophy, the ensemble averaged
variance of fluctuations in vorticity, curlv, is piled up at small scales. This
eventually leads to the estimate (cf. Chap. VIII in [85])

Reeff,2D ≈ (L/h)2, (26)

which explains why it is so much easier to achieve high values of Re or Reeff

in simulations of flows in 2D. The different dynamics, however, limits the
usefulness of this simplification (for a real flow, even L and ld might change).

The efficiency of radiative transfer and the inefficiency of molecular (or
actually atomic) diffusion in stars yields Prandtl numbers Pr in the range of
10−6 to 10−10 for both the stellar interior and the stellar surface layers (see
Sect. 1.2 for definitions). However, both molecular processes and radiation can
contribute to viscosity. Following Chap. 43.1 of [71] the computations of Pr
are often based on the radiative viscosity νrad = aT 4/(c κ ρ2) = 3 cpTχ/(4 c2)
alone. The resulting physical quantity should rather be called Prrad. A detailed
computation with more accurate tables for ν (see [48]) demonstrates that both
νrad and ν have very similar values at the solar surface. But in the underneath
lying layer of hydrogen ionization νrad drops to only 0.1 to 0.01 of ν. It becomes
larger than ν only further inside the convective region. For the Sun, surface
values of Pr are close to ∼ 10−9 and gradually increase to ∼ 10−7 at the
bottom of the convection zone. The extremely low Prandtl number is one of
the most important differences between stellar convection and any terrestrial
flow. It also explains why the detailed treatment of radiative processes receives
much more attention in numerical simulations of stellar convection, while
viscous processes are left to rather simple modelling [100, 109, 124, 135, 136].
For such purposes νrad provides a sufficient estimate for ν which can easily
be calculated, if T , ρ, chemical composition and opacity are known. As the
viscosity in numerical simulations is equal to νeff on the resolved scales � � h,
LES of stellar convection are characterized by an effective Prandtl number
Preff = νeff/χ. If νeff just results from a sub-grid-scale model, it is also called
turbulent viscosity, νt. The energy transport by scales l < h gives rise to a
turbulent diffusivity χt which is separately accounted for in such simulations.
The ratio of these two is known as the turbulent Prandtl number Prt. An
example for applying this modelling approach to solar surface convection can
be found in [109]. Note that these turbulence quantities describe processes
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operating on scales l < h interacting with scales � � h. They should not
be confused with their identically named siblings in Reynolds-stress models
of convection which describe the kinetic and thermal energy transport on all
scales (cf. the chapter “Turbulence in Astrophysical and Geophysical Flows”).

4.2 Shear Driven Turbulence and Grid Refinement

What value of Reeff do we have to achieve, if we want to observe turbulent
shear instabilities in an LES on scales � � h, which are created on the scales
resolved in the simulations? The critical Reynolds number for the transition
from laminar to turbulent flow most often quoted in the literature refers to
circular pipe flow and implies that Reeff � 2300. The shear–stress between an
up- and a downflow in a convection zone is perhaps more similar to plane Cou-
ette flow (occurring in fluid embedded between two plates moved in opposite
directions). This would imply Reeff � 1000 (cf. [85]). Since there is a consider-
able spread in the numerical value for different flows which depends on details
of the actual experiment, we shall use here the condition that Reeff � 2300 as
a rough estimate. This number should not be confused with the much lower
critical Reynolds number for the onset of turbulence in stratified shear flow
as discussed, e.g. in [114]. How can we fulfill this requirement in a 3D nu-
merical simulation of convection? From (25) we have that Reeff ≈ (L/h)4/3.
Because dissipation occurs within a simulation at scales ∼ h, a simulation
with H � L > h requires N = L/h � 330 grid points per spatial direction to
reproduce fully developed shear driven turbulence. The latter is expected to
be caused by the Kelvin–Helmholtz instability which in turn results from the
shearing forces between up- and downflows in a convective zone. L, the length
scale of the maximum of kinetic energy in the flow, should be contained safely
within the simulation box. We therefore require that H > L, whence N � 330
is a lower limit. It might seem sufficient to perform a simulation at a much
lower Reeff . In that case the sub-grid-scale model or some kind of viscosity
has to act exactly like the non-linear forces on the scale h for the cell average
over h to behave like the volume average of a fully resolved calculation. This
is unfortunately not within the mathematical nature of the methods used for
modelling unresolved scales: if we really want to find out how shear driven tur-
bulence influences the convective flow in detail, we cannot avoid resolving the
shear instability itself. Otherwise the simulation requires careful comparisons
with experimental data to ensure that the properties of the simulated flow at
scales � � h are within an acceptable range of uncertainty introduced by the
sub-grid-scale modelling. Moreover, the lower limit of N � 330 is optimistic,
because the effective resolution h of an LES is usually less than the actual
grid spacing Δx, especially, if numerical or artificial viscosity are large.

In solar granulation shear-driven turbulence can be excited as a secondary
instability [100] by the up- and downflows of convection resulting from the pri-
mary (convective) instability. For L ∼ 1300 km relation (25) implies h ∼ 4 km,
if we want to fully resolve the shear driven instability within a 3D simulation.
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For 2D simulations this is already achieved at h ∼ 27 km because of (26).
This might explain why the results shown in Fig. 4 at h � 23 km reveal many
features of the much higher resolution simulations discussed in [100], where
h � 3 km. Artificial diffusivity was used in most of the latter.

As just mentioned, H = L is too small for a realistic simulation of solar
granulation, even when using periodic boundary conditions. Granules interact
with each other both horizontally and vertically. In simulations of Boussinesq
convection the aspect ratio A = Hhor/Hvert is used to relate the horizontal
width to the vertical extent of the simulation. Aspect ratios of 10 and 20
have been used [37] to study the possible origin of solar mesogranulation,
large scale structures with an average size of ∼ 6000 km. The consequences of
choosing Hhor between ∼ L and ∼ 4L on simulations of solar granulation were
studied in [109]. If Hhor � 4L, the influence of horizontal periodicity on pturb,
∇−∇ad, and other ensemble-averaged quantities describing the flow and the
stratification of the convection zone becomes acceptably small. That size is
just enough to hold a single mesogranular structure as studied in the MHD
simulations of [37]. Hence, Hhor � 4L . . . 6L is recommended for applying
horizontal periodic boundary conditions in solar granulation simulations. If we
also want to study shear driven turbulence in such simulations, we end up with
N ∼ 1000 . . . 2000 as a lower limit for computations which are done with a
constant resolution throughout the simulation volume. In 3D that requirement
implies using 109 . . . 1010 grid points which brings the currently most powerful
supercomputers to their capability limits for just a single simulation. Would
it help to use a larger h in regions of larger L, i.e. in layers further inside the
Sun, to keep the ratio L/h constant? This can save some resources, but the
total dynamical range of the flow is larger anyway for a deep simulation, since
ν and ld do not change very much, and the increase in L means pushing H.
As a measure on its own a constant L/h is insufficient.

An increasing number of numerical simulations of turbulent flows nowa-
days uses adaptive mesh refinement to increase numerical resolution within the
simulation volume where it is most needed (see [103] for reviews and applica-
tions). The basic idea behind this approach is to place more grid points into
regions of rapid local variation of the numerical solution. The problem with
this approach for simulating large scale convective zones is that the refinement
strategy works well essentially, if resolution is needed along surfaces in 3D or
lines in 2D, i.e. if the structures which require enhanced resolution are not vol-
ume filling. Since up- and downflows cover large volume fractions, such a grid
refinement strategy does not really help (a much more suitable problem for
this approach would be an isolated thunderstorm cloud in the atmosphere of
the Earth where the region separating the cloud form its environment justifies
enhanced numerical resolution). An older variant of this approach, however, is
quite useful for studying secondary turbulent instabilities in solar and stellar
convection zones: grid nesting. It provides high resolution in a small inte-
rior domain and lower resolution in a much larger volume which contains the
high resolution domain. This approach was used in [100] (in 2D). It allows
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resolving shear-driven turbulence in 3D without sacrificing a realistic aspect
ratio: H � 6L in the low-resolution part while L/h � 330 in the central,
high-resolution part is feasible with a total of just ∼ 108 grid points. Such
simulations have to be evaluated carefully, as features originating from the
lower resolution part of the simulation may enter the high-resolution domain
and create transient features near the boundaries of the high-resolution part.

How robust are our estimates based on (25)? For a direct numerical simu-
lation study of the typical laboratory setting of convection between two plates,
it has recently been found [108] that this type of flow shows notable devia-
tions from a Kolmogorov scaling l/ld ∼ Re3/4. Other setups such as those
of [134] with higher Rayleigh number but much lower aspect ratio found an
l/ld ∼ Re3/4 scaling at least for some cases. An inspection of numerical resolu-
tion reveals that all these simulations had less than N3 = 3003 grid points for
the simulation volume, though N > 300 was sometimes used for a preferred di-
rection. That may not suffice to resolve turbulent shear (Reeff � 2000). Hence,
while the up- and downflow patterns of convective flows (see Fig. 2) are a ro-
bust feature readily found in direct numerical simulations with Re � 1000
and ld � h [99, 108], in LES of solar granulation with Reeff < 1000 (see
Sect. 5), in geophysical simulations (see the chapter “Turbulence in the Lower
Troposphere: Second-Order Closure and Mass-Flux Modelling Frameworks”),
and in many others, such calculations cannot be used straightforwardly to
extrapolate all the scaling properties of higher resolution simulations. This
holds even more so for 2D simulations which at similar resolution as their
3D counterparts can represent a different domain in terms of dynamics and
non-linear interactions.

4.3 Time Scales, Relaxation and Computing Statistics

For how long do we have to perform a numerical simulation of convection to
obtain useful statistical information? To answer this question we first intro-
duce a few time scales. An important quantity for a convective flow is the
turn over time scale τc = Hvert/U = H/U , or more generally,

τc =
∫ top

bottom

u−1(x)dx =
∫ H

0

u−1(x)dx, (27)

where u(x) is the averaged root mean square velocity along the vertical coor-
dinate x. Close to the surface of a star τc is usually just a small multiple of the
acoustic time scale τac =

∫H

0
c−1
s (x)dx ≈ H/cs. Here, cs is the local average

sound speed (the alternative definition of τac = 2Hp/cs, with Hp = P/(ρg)
as the local pressure scale height, is less useful in this context). In the interior
of a star, τc ≈ 102 . . . 104 τac (see Sect. 4.4). τc provides a crude estimate how
long it would take a test particle to travel from one boundary of the convec-
tion zone to the other. This is to be understood in a statistical sense: only
few test particles will complete this journey, because they are also advected
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sidewards and even carried back in the opposite direction. τc is thus an opti-
mistic lower boundary for τmix, the time it takes to mix a convective zone. For
impenetrable vertical boundaries the definition (27) has to be refined to avoid
singularities due to u = 0. A frequent substitute for τc is the buoyancy time
scale τb or inverse Brunt–Väisälä frequency, the time scale on which density
perturbations grow inside a convective zone [39]. In the interior of a convec-
tion zone τb ≈ τc. Close to stable layers τb becomes arbitrarily large, since
perturbations do not grow at all for a stable layer, where τb is related to wave
propagation [45] instead of advective motions. In simulations with extended
radiative layers the interval [0,H] in (27) is often restricted to the convectively
unstable layers or to layers where u(x) is larger than some lower bound. Local
time scales τc, τac and τb can be computed for a vertical subdomain [x1, x2].

In addition to τc, τac and τb, there are several important time scales which
are introduced by the sources and sinks of energy appearing in Eq. (9): gravity,
radiation and nuclear energy production. The latter governs most phases of
stellar evolution, but becomes comparable to the other two only during late,
dynamical phases such as thermonuclear supernovae (see the chapter “Tur-
bulent Combustion in Thermonuclear Supernovae”). In other cases it is much
longer [71, 137] and can be neglected for hydrodynamical problems. So what
about gravity? The Kelvin–Helmholtz time scale estimates for how long a
star can sustain its present luminosity from its current gravitational potential
energy:

tKH = |Ω|/L ≈ GM2/(RL). (28)

Here, Ω is the gravitational binding energy and M, R and L are mass,
radius and luminosity of the star. More accurate estimates introduce factors
of order unity [137]. For a spherically symmetric star Ω can also be com-
puted from |Ω| = 3

∫Ms(r2)

Ms(r1)
P/ρdMs by means of the virial theorem [71],

where Ms(rbottom)−Ms(rtop) is the total mass inside the simulation box and
Ms(r) = M − Mr is the mass integrated downwards from the surface. This
way of computing tKH is also useful for surface convection simulations in a
rectangular box geometry as long as differences to spherical symmetry are
small. If the mass distribution of a star as a function of depth changes, tKH

also provides the time scale required for a stellar model to readjust itself into
an equilibrium state [137]. The radiative time scale trad on the other hand,
describes how long it takes for a perturbation in temperature to disappear
due to radiative transfer. In the optically thick case it is equal to the radiative
diffusion time scale, which for a perturbation of size l implies that trad ≈ l2/χ.
As long as convection is efficient, trad is not important. In that case, trad 
 τc,
if we take l = z as the size of the convective zone and compute τc from inte-
gration over the same domain. Whenever radiative losses of the fluid are large
and convection is inefficient, trad becomes important. It may even constrain
the time step of a numerical simulation of surface convection [53] (the latter
scenario requires a more general computation of radiative cooling valid for
the optically thin case, see [121]). Apart from the layers of partial ionization
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of hydrogen and helium in a star, which contain very little of its total mass,
the radiative temperature gradient ∇rad agrees with the actual temperature
gradient ∇ to within an order of magnitude. It is thus not surprising that trad
and tKH often agree with each other to within a factor of 10 for layers inside
a star and trad is used interchangeably with tKH as the thermal adjustment
time of stars [71]. These interpretations are of interest for numerical simula-
tions, because they imply that tKH describes how long a simulation requires
to adjust itself to new model parameters. But do we really have to perform
simulations for such a long time scale?

For a convection zone filling the entire computational domain, a simulation
time ts of several multiples of τc is sufficient to establish the mean structure of
the physical system, since it is rapidly mixed by the velocity field and brought
into a new dynamical equilibrium.7 For numerical simulations of surface con-
vection in the Sun and in cool stars, each of the local time scales τc, τac, trad
and tKH is very short for the stably stratified layers on top, where radiative
losses occur (typically fractions of a second to at most a few minutes, except
for stars with very large radii). The time scale for relaxing the simulation
through advection is thus governed by the value of τc for the entire simulation
domain. As a result, the mean structure is established within a few multiples
of τc [90, 109]. Is such a short ts sufficient to compute higher order correlations
statistics and consider the system as thermally relaxed?

If the starting configuration for the simulation is far from hydrostatic
balance, a much more vigorous flow can be driven. This accelerates relax-
ation towards a state close to equilibrium. Thus, tKH will be initially much
shorter and change during the simulation towards its equilibrium value. If the
starting configuration is close to hydrostatic balance, much smaller changes
occur due the flow. In both cases the relevant physical process for advanc-
ing the physical state of the simulation domain, advection of mass, occurs
on short time scales of a few multiples of τc. For a 3-Mm-deep box of a
typical solar granulation simulation, tKH is roughly 1 day or ∼ 102 τc. Re-
ported relaxation times are a few hours for the Sun [109] and other cool
stars [90]. This is clearly shorter than tKH, in agreement with the observa-
tion that equilibrium is established by advection of mass. Figure 5 shows the
ensemble averages of higher order moments of the horizontal velocity field
for the solar granulation simulations discussed in Sect. 5. The variables u
and v designate the deviations from the horizontal mean of the two hori-
zontal flow components. Their ensemble averages have been obtained from
first horizontally averaging the quantities of interest which in turn are av-
eraged in time. The resulting functions depend on depth only. The quantity
∇ − ∇ad has been computed from averaging the local gradients (∇, ∇ad).
The agreement for the root mean square velocities is remarkable. However,
skewness of the horizontal flow is less well converged (it should be zero for

7 We exclude here simulations starting from very small velocities: if they are too
small, they may not even destabilize the fluid to create a sustainable flow.
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Fig. 5. Moments of horizontal velocities in solar granulation simulations with open
and closed vertical boundary conditions. The upper right panel shows the root mean
square averages of both components, u and v. The simulations are well relaxed, since
(u2)1/2 ≈ (v2)1/2. Lower left and right panels show skewness and kurtosis. Ideally,
Su = Sv = 0, which is clearly the most challenging quantity. The superadiabatic
gradient ∇ − ∇ad is shown as a reference. Just underneath the surface (i.e. below
0 km) is the superadiabatic peak. The feature to the far left is caused by the closed
boundary at the bottom. Data kindly provided by M. Steffen and F.J. Robinson,
based on the CO5BOLD code [52] and the Chan–Kim–Sofia (CKS) code [38, 70]

simulations of infinite horizontal extent in the absence of any external forc-
ing breaking horizontal symmetry). Part of this discrepancy is related to the
small aspect ratio (just a few granules per box) of the simulation run for
a closed box. However, while urms and vrms barely differ between averages
over 52 min (shown) and 26 min of averaging time tav for the simulation with
open vertical boundaries, Su and Sv continue to improve. It appears that a
tav close to tKH is necessary for a similar agreement as for urms and vrms,
unless Hhor 
 Hvert. The latter implies that each snapshot of the simula-
tion at a given time is already a good representation of the ensemble av-
erage, which is not the case here. Not all the ensemble averaged quantities
are equally sensitive to intermittent events, which can take place on time
scales much longer than τc and contribute significantly to their statistics.
Therefore, convergence of ensemble averages and hence the necessary tav are
checked in a case-dependent way [78] by comparing averages over smaller
subintervals in time to exclude long-term trends (e.g. comparing [0, tav/2]
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vs. [tav/2, tav]). Since initial conditions may be atypical, the first, relaxation
part trel of ts has to be neglected, whence ts = trel + tav. The averaging
time tav and the simulation time ts thus depend on the physical question of
interest.

But is there also a case for long relaxation? Possible issues include oscilla-
tions, long-term drifts, and inefficient mass flux combined with poorly known
initial conditions. The first case occurs in simulations of surface convection
in solar-like stars. In general, the initial conditions of such simulations are
slightly out of hydrostatic equilibrium, since a stellar structure model, a sim-
ulation in 2D, or a coarse grid simulation in 3D will have a different pturb. This
triggers artificial p-modes as a result of which the centre of gravity within the
simulation box will oscillate vertically. The life-time τdamp of such p-modes is
similar to those naturally triggered by the convective flow itself: of the order
of a few days for a simulation 3-Mm deep (cf. [57], see [45] for a review on
p-mode physics). Consequently, τdamp > tKH. Though this may not matter
for computing spectral line profiles, it is highly unwanted when probing simu-
lations through helioseismology. Fortunately, the oscillations can be removed
more rapidly by damping them numerically over t ∼ 5 τc, which brings the
relaxation time scale trel into the previously mentioned range.

Another issue are slow drifts over tKH: statistical averages will slowly
change, if there is a remaining excess heat or gravitational energy which has
not yet been released through radiation at the upper boundary of the simu-
lation box. In simulations with no internal source of energy and a constant
heat flux entering just the bottom of the simulation domain, this can be no-
ticed by a nonconstant flux of a few per cent of the total energy flux through
the domain (cf. [99]). For probing closures in Reynolds stress models that
accuracy is often sufficient, but for a comparison with a fully self-consistent
stellar structure calculation based on a Reynolds stress model of convection
such a slow drift of ensemble averages introduces systematic errors. Stellar
models are relaxed on the time scale tKH for the entire star or at least the
domain considered for comparison: such stationary limit configurations are
very useful to accelerate the time integration of the very long phases of nearly
perfect thermal equilibrium over the “life time” of a star (cf. [71, 137]). In
such comparisons discrepancies caused by insufficient thermal relaxation can
be misleading, if high accuracy (better than 5–10% relative error) is expected
for sensitive quantities (say, Sw or Fkin).

Poorly known initial conditions can be a problem in simulations with a
low mass flow in the lower parts of the domain. To understand this point let
us first consider the Sun. The kinetic energy of the solar photosphere due to
convection is roughly comparable to its gravitational potential energy. If we
also consider that tKH � 30 s and tKH < τc for the photospheric layers, it
is evident that even poor initial conditions for the surface do not influence
trel for a simulation extending say 3 Mm below the photosphere, because τc
for the entire domain is of the order of 10 min. However, for the entire solar
convection zone tKH is about 105 years! From the solar model tabulated in
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[128] one can estimate that τc is about 1 month for that region. The energy
transported to the surface is just a tiny fraction of the gravitational poten-
tial energy of the entire convection zone. Since the solar convection zone in
most layers is nearly adiabatic (hence the mean structure is well known) and
mixing through advection only requires a few rotation periods (roughly equal
to τc), it is feasible to perform simulations of the lower part of the solar
convection zone (e.g. [24]) with realistic values of M, R and L. But what
about the stable layers underneath? The resolution requirements introduced
by those layers are so challenging that presently artificially enhanced values
of ν and χ have to be used [24]. They help in a more rapid mixing of those
layers for which good initial conditions are not known. Reasonable ensem-
ble averages can again be computed after trel of a few τc, although a very
small and slow drift of the ensemble averages in time has to be expected once
more long-term computations become feasible (say with ts of a few decades
to study the solar cycle). Simulations of overshooting below a stellar convec-
tion zone can also be performed for A-stars, which have about twice the mass
of the Sun with very shallow surface convective layers. Their comparatively
small extent is caused by high radiative losses due to higher temperatures
and lower densities. Hence, the entire vertical extent of the convective lay-
ers and their surroundings can be considered in a single numerical simulation
in 3D with present computational resources [53]. In this case, the stratifi-
cation remains close to radiative so a good initial stratification is possible
and high convective velocities lead to rapid mixing. The situation is different
for arbitrary convection zones deep inside stars. An example of what hap-
pens when the mass distribution cannot be guessed in advance and a large
amount of excess energy has to be transported off is given in [99]. In this
case strong overshooting changes the initial mass distribution beneath a con-
vection zone sandwiched in between two deep, optically thick and convec-
tively stable layers. Potential energy is required to build up the flow itself,
since a good guess for ∇ − ∇ad is not known in advance. Hence, it took
ts ∼ 0.5 tKH ∼ 5000 τac (or more than 103τc) until converged statistical aver-
ages could be computed from that simulation (cf. the comments in [79] and
compare the results shown in [99] with [76]). However, even if a convection
model had been used to guess the initial mass distribution more accurately,
ts ∼ 103τac would have been inevitable due to the mass redistribution below
the convection zone where advection is no longer efficient. A variant of this
problem is the case of open vertical lower boundary conditions for which a
constant input flux should be imposed at the bottom: to simulate solar sur-
face convection for the correct value of L requires an iterative change of the
input entropy on trel ∼ tKH (see [135] and Sect. 5). Starting from a ‘more
similar input model’ is just the same procedure distributed over more than
one simulation run. Whether one can avoid relaxation on a scale trel ∼ tKH or
not hence depends on the absence or presence of a strong feedback between
the (not necessarily in advance known) average thermal structure and the
convection zone.
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4.4 Sound Speed and Convection

Is stellar convection really subsonic? A large range of Mach numbers Ma =
u/cs is found in models and simulations of stellar convection zones of different
stars or even inside the same star. Convection zones deeply inside stars usually
have Ma of O(10−4) to O(10−2). Examples are the bottom of the convection
zone of our Sun and convective core regions of massive stars. On the contrary,
surface convection zones can have Ma of O(1). The root mean square velocities
quoted for the Sun in Sect. 1 imply Ma ∼ 0.3 . . . 0.4. For hotter stars Ma ∼ 0.7
has been found in numerical simulations [131]. As a result, it is common
to find even Ma > 1.0 at least locally, for instance, inside fast downdrafts.
Such regions are prone to excess heating caused by shocks. The latter form
when local flow velocities exceed cs which in turn reduces the efficiency of
convective energy transport. But that is neither an obstacle for convection
to occur, nor for turbulence, nor for the combination of both. Shock fronts
are also encountered at the solar surface (see, for instance, [67]). From a
spectroscopic point of view shocks can be difficult to distinguish from other
processes, say, if only disk-averaged line profiles in a limited wavelength range
are available. Indeed, observed “macroturbulent line broadening” in a stellar
spectrum (Sect. 2.3) may be caused by shock fronts, a convective up- and
downflow pattern, or other types of velocity fields (an example for this problem
are the line profiles found for supergiant stars, see [84]). Note that sound
waves can easily be generated in regions where the average flow speed is close
to cs. This adds another possible sink of energy to the convective flow. Thus,
convection, turbulence, local shock fronts and sound waves can appear within
the same simulation domain. For that reason, numerical simulation codes used
to study stellar surface convection must be able to tackle shock phenomena,
independently of how they deal with turbulence on unresolved scales. At this
point it is important to recall the difference between the (near) discontinuity of
some physical variables at a given location (the shock front) and the velocity
the discontinuity is moving with. It is completely false that a shock wave
always propagates at supersonic velocities. Shocks may even stall, as is the
case at the surface of neutron stars during their formation in a core-collapse
supernova [98]. Nor does there have to be a flow across the shock interface: in
contact discontinuities the associated mass flow across the interface is zero.

5 Boundary Conditions and Reynolds Averages

One important difference between the convective planetary boundary layer
of the atmosphere of the Earth or laboratory experiments on convection and
stellar convection zones is the absence of a ‘wall boundary layer’ in stars. A
solid boundary provides a distinct source of turbulence through shear stresses
between the flow in the interior of the convection zone and the boundary
itself. Another consequence is the formation of a boundary layer near the
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‘wall’. Local instabilities in this wall boundary layer are an important source
of intermittency (see also Sect. IV.3 in [85]). Solid boundaries set a strict
upper limit to the length scales in a flow at a given location. In stars including
our Sun the penetrable (vertical) boundaries of a convection zone do not set
strict upper limits to the size of flow structures. The stably stratified layers
enclosing convective layers can act both as a source or a sink of turbulence
(see Sect. 2.1 and the chapter “Turbulence in Astrophysical and Geophysical
Flows”). Just like the role of shear between convective up- and downflows the
influence of closed (solid) boundaries as compared to open (penetrable) ones
is still debated for the case of stellar convection. In the following, we discuss
some results hopefully motivating further research. To proceed we first explain
the implementation of boundary conditions.

In lateral directions, the boundaries of simulation boxes are commonly
assumed to be open and periodic. This assumption relies either on spheri-
cal symmetry of the simulation domain or on considering identical copies of
rectangular boxes. As discussed in Sect. 4.2, periodic copies of a simulation
box require a sufficiently large aspect ratio to provide space for a minimum
number of distinct up- and downflow structures. The intention behind this is
to reduce self-interaction between the copies of the physical system and thus
provide a more realistic representation of ensemble states. To this end it is
sufficient that Hhor � 3 . . . 6L, unless we are explicitly interested in the long-
range interactions (extended tests can be found in [109]). This idea is the basis
of the “box-in-a-star” approach which simulates just a limited volume within
the star. Spherical symmetry is used in simulations of entire shells within a
star or the core of a star as a variant of the “star-in-a-box” approach, in which
the simulation volume is assumed to contain the entire star [52]. The latter are
known as global simulations which are much more limited in spatial resolution.
The box-in-a-star approach allows local simulations with very high resolution.
The price to pay for this increased resolution is the necessity to ‘guess’ what
happens at the boundaries. But what to do in particular with the vertical
boundaries? Stellar convection zones are characterized by a very strong ver-
tical stratification due to gravitation which eventually leads to temperature
and density changing by orders of magnitudes throughout the convection zone
in stars such as our Sun (Sect. 2). This motivates the following strategies.

Despite they are ‘artificial’ closed vertical boundary conditions are often
used in stellar convection simulations. This is mainly due to their mathe-
matical simplicity. How are they applied in a stellar context? Closed vertical
boundaries are implemented as solid, slip conditions (also called free-slip con-
ditions), where v1 = 0 and ∂v2/∂x1 = ∂v3/∂x1 = 0. Hence, no fluid can flow
through the boundary (v1 = 0), but the flow deflected sidewards does not
create shear stresses acting on the vertical boundaries (zero vertical gradi-
ents ∂/∂x1 of horizontal components v2 resp. v3). Thus, they are also termed
stress-free boundaries. This removes some of the unwanted “wall effects”, but
nevertheless has an impact on the flow inside the simulation box, which we
discuss below. The vertical boundary conditions for (1), (2) and (3) resp. (10)
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are completed in simulations with closed vertical boundaries by specifying an
input heat flux at the bottom and a fixed temperature or radiative flux at the
top. Since no mass is advected beyond the vertical boundaries in agreement
with v1 = 0, the total mass is conserved (see [24, 99, 109] and many others).

Simulations with open (vertical) boundaries also assume periodic horizon-
tal boundary conditions. Mass flowing vertically outwards is generally left
unaltered. On average it must be compensated by an equal amount of mass
flowing inwards. It is usually the inflow which is modified according to physical
assumptions about the surrounding fluid, since the properties of the interior
are explicitly simulated anyway. For solar surface convection with a lower
boundary inside the convective zone the inflow is considered to be isentropic
and a fixed value for the entropy or internal energy of the inflow replaces the
constant heat flux condition [124, 135, 136]. The surface effective temperature
and thus surface flux and luminosity L cannot be predetermined and a sim-
ulation for a specific L requires iterating the value of the input entropy (see
[135] for a complete description). Upper open boundaries are considered to be
radiative and damp outwards running waves or at least avoid their reflection
into the simulation domain. Examples can be found in [124, 136]. Open and
closed vertical boundaries are sometimes also used just on one side [127, 135].

Figures 5, 6, 7 and 8 compare the mean structure and some higher order
moments of velocity and temperature fluctuations as found in two different nu-
merical simulations of solar granulation. In both the cases the upper boundary
is within the stably stratified photosphere, while the lower boundary is inside
the quasi-adiabatically stratified convection zone (cf. Fig. 5). In the simula-
tion with vertical boundaries a second-order scheme with a Smagorinsky type
sub-grid-scale viscosity [49, 120] is used. Shocks are treated by enhancing the
coefficient of the sub-grid-scale viscosity proportional to (divv)2. More de-
tails on the numerical methods are given in [38, 70, 109]. The computational
box has 170 × 58 × 58 grid points, which are distributed equidistantly over a
physical box size of 3.0× 2.9× 2.9 Mm3. Hence, the first (vertical) coordinate
has higher resolution. The simulation itself is described in detail in [78]. The
basic simulation parameters (effective temperature of 5777 K, surface gravity
g of 274 m s−2, chemical composition) and the initial mass distribution were
taken from a standard solar structure model [109]. The horizontal width is the
bare minimum to compute meaningful ensemble averages, as shown in [109].

The simulation with open boundary conditions has been presented in [127].
It uses a second-order scheme which can follow the propagation of shock fronts
as described in [106], with the flux reconstruction scheme of van Leer [133].
The basic principles of this method are also discussed in [105] in the general
context of higher order shock-capturing schemes. A Smagorinsky type sub-
grid-scale viscosity [49, 120] is used to avoid piling up of kinetic energy at the
grid scale. The simulation code was first described in [52] and in more de-
tail in [136]. The box used for this simulation has 165× 400× 400 grid points
distributed non-equidistantly vertically and equidistantly in the horizontal di-
rections. The physical domain size is 3.0×11.2×11.2 Mm3. The input entropy
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Fig. 6. Average temperature T and gas pressure P in solar simulations with open
and closed vertical boundary conditions shown in the top row, density ρ and cross-
correlation wθ in the middle row, and root mean square temperature (θ2)1/2 and
vertical velocity (w2)1/2 in the bottom row (data by M. Steffen and F.J. Robinson,
based on the CO5BOLD code and the Chan–Kim–Sofia (CKS) code, see also text)

has been adjusted such that solar parameters are used as in the simulation
with closed boundary conditions. Ensemble averages have been obtained from
snap shots over a total of 52 min. of solar time. By comparison, the ensemble
averages for the simulations with closed boundary conditions have been ob-
tained from averages over 150 min. or ∼ 20 τc. Note that since the box with
open boundaries is located ≈ 500 km further upwards, its τc is somewhat
shorter (cf. w2 in Fig. 6 and the definition in (27)).

Figure 6 shows that temperature, gas pressure and density as a function
of depth are similar for the simulations. In particular, the steep gradient in
T near the surface (at ∼ 0 km) is almost identical (this leads to a similar
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Fig. 7. Skewness and kurtosis (upper and lower panels) of temperature (Sθ, Kθ)
and vertical velocity (Sw, Kw) (left and right panels) in solar granulation simulations
with open and closed vertical boundary conditions (data courtesy M. Steffen and
F.J. Robinson, based on the CO5BOLD code and the Chan–Kim–Sofia (CKS) code)

peak in ∇−∇ad, for which the results from the (FJR) simulation with closed
vertical boundaries are shown in Fig. 5). The root mean square temperature
deviations from the horizontal mean T and its counterpart for vertical ve-
locity are also shown in Fig. 6. From a peak of over 1000 K, (θ2)1/2 drops
to less than 50 K within the simulated domain (in solar structure models it
continues to drop to ∼ 1 K near the bottom of the solar convection zone).
This corresponds to a decrease of relative fluctuations from 10–20% to less
than 0.25% (and ∼ 10−6 near the bottom of the solar convection zone). This
strong decrease is a result of stratification and a constant energy flux inside
the convection zone. The effects of a closed boundary are more obvious for
(w2)1/2, as it causes a more gentle decrease of velocities towards the bottom
followed by a sharp drop right near the boundary, while there is just a small
increase in (θ2)1/2 next to the closed lower boundary. Considering θ2 and
w2 the shape of the cross-correlation wθ shown in Fig. 6 is not surprising.
But what causes the difference in the maximum of (θ2)1/2? Possible reasons
could be frequency independent radiative transfer (cooling the surface more
efficiently), or differences due to horizontal grid spacing, opacities, and the
equation of state. But what about the vertical boundaries? To demonstrate
their role averages for T , wθ and (θ2)1/2 from another simulation with closed
vertical boundaries are shown in Fig. 6 (FJR 2007), which has a higher vertical
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Fig. 8. Cross-correlations of vertical velocity and temperature in solar granula-
tion simulations with open and closed vertical boundary conditions (data courtesy
M. Steffen and F.J. Robinson, based on the CO5BOLD code and the Chan–Kim–
Sofia (CKS) code). Note that all correlations (wθ, w2θ2, w2θ, wθ2, w3θ, wθ3) have
been normalized with respect to w2 and θ2

extent above the optical surface.8 Indeed, the distance to the top boundary
is the main reason for changes in max(θ2)1/2. Nevertheless, mass and energy
distributions are not very sensitive to whether vertical boundaries are open

8 This is traded for a slightly smaller extent near the bottom. Moreover, the chem-
ical composition is similar to the simulation with open boundaries and a higher
horizontal resolution of 35 km was used (vertical one: 15 km) as well as a more
extended box of Hhor ∼ 4100 km (data from a private communication with
F.J. Robinson).
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or closed provided the boundaries are away from the region of interest. This
relies on the fact that the simulation with closed boundaries exceeds a mini-
mum depth, as was shown by an intercomparison of simulations with closed
boundaries and different vertical extent [109]. It was concluded that simula-
tions with closed boundaries should extend to � 2.8 Mm below the observable
photosphere to limit the influence of the boundaries on mean structure, the
temperature gradient, and second-order moments of velocity. But what about
higher order moments? In [78] it was estimated from the shape of different
higher order moments as a function of depth that boundaries influence the
flow and the ensemble averages up to a distance of 1.5–2 pressure scale heights
(Hp, or difference in lnP ). Looking at their Table 1 this means that layers
above +50 km and below −1650 km are strongly influenced by the vertical
boundaries. For Sθ and Kθ shown in Fig. 7 this appears to be a reasonable
estimate. The differences in the maxima of Kθ are found for the same layers
as for θ2 (Fig. 6). Comparisons with another simulation9 with open boundary
conditions [13] and a simulation with lower resolution corroborate these re-
sults. Looking at Fig. 7 we find that the differences between open and closed
boundary conditions are largest for Sw followed by Kw (Fig. 7). Similar to T ,
wθ, and (θ2)1/2 shown in Fig. 6, Sw is influenced by vertical boundaries too
close to the optical surface. The influence of the lower boundary appears to
reach some 500 km or 1 Hp further up for both Sw and Kw than for Sθ and
Kθ. Do the cross-correlations between velocity and temperature show a differ-
ent behaviour? Figure 8 compares them up to the fourth-order moments. As
with w3, w4, θ3 and θ4, it is preferable to normalize them with second-order
moments derived from the same simulation. The reason can be seen by the
example of wθ shown in both Figs. 6 and 8. The stratification leads to very pro-
nounced maxima and minima at the solar surface (+0 km) with all functions
rapidly dropping towards the interior, particularly for higher order moments,
which makes a comparison of unnormalized quantities on a linear scale diffi-
cult. Note that while differences in wθ in Fig. 6 are found mostly around a
depth of +0 km, its normalized counterpart (Fig. 8) shows a linear trend for
the case with closed boundaries inside the convection zone as opposed to the
flat profile found for the case with open boundaries. The normalized third-
and fourth-order cross-correlations all show an excellent agreement between
the simulations sufficiently away from the vertical boundaries, except for the
differences at the solar surface due to the enhanced temperature fluctuations
in the simulation with open boundaries. The safety margins for closed bound-
ary conditions suggested in [78] are hence acceptable for the cross-correlations
and a box depth of 3 Mm.

Let us reconsider second-, third- and fourth-order moments of horizontal
velocity fluctuations as shown in Fig. 5 in Sect. 4.3. Here, the deviations for
the root mean square velocity are more similar in extent and overall trends to
the case of Sw shown in Fig. 7. The deviations are even larger for skewness and

9 From a private communication with K. Belkacem and R. Samadi.
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kurtosis of horizontal velocities. However, there is also a substantial difference
among the two velocity components within each simulation, particularly for
the case of skewness. This indicates slow convergence of ensemble averages,
probably aggravated by the limited horizontal box size of Hhor ∼ 2.5L of the
simulations with closed boundary conditions as opposed to Hhor ∼ 9L for the
simulations with open boundary conditions. In the latter, there is a deviation
of horizontal velocities from a quasi-normal distribution Ku = Kv = 3 in the
interior which is not obvious for the case with closed boundaries [78] nor for
a deeper simulation with open boundaries at lower resolution.10

At the bottom line, mean structure and ensemble-averaged second-to
fourth-order moments of velocity and temperature fields agree fairly well for
simulations with either open or closed boundary conditions, provided the lat-
ter are sufficiently deep [109] and layers close to the boundary are considered
to be just part of an ‘extended boundary condition’. For some of the physical
quantities the safety margin from a closed boundary within a convective zone
appears to be slightly larger than suggested [78], about 2–2.5 pressure scale
heights. If the boundary is within stably stratified layers, the safety margin
in turn can be smaller. Note that also open boundary conditions have their
limitations. Despite the large aspect ratio of the simulations used in this com-
parison, there are some trends close to the lower boundary, for instance for Kθ

shown in Fig. 7, which have no apparent physical reason and are thus likely an
artefact of the boundary conditions similar to the much stronger trends ob-
served for closed boundaries. The necessary safety margin, however, appears
to be substantially smaller, some 0.5–1.5 pressure scale heights depending on
the quantity of interest. Away from the lower open boundary the normalized
higher order moments saturate within the deep quasi-adiabatic convection
zones. This agrees with the idea that not much happens there other than an
increase of scales due to stratification (cf. also [126]).

It is important to remember that waves are more severely influenced par-
ticularly by upper closed boundary conditions, since within a thin medium
they are easily reflected downwards. Depending on the physical question of
interest this may require open boundary conditions also within stably strati-
fied layers. Closed boundary conditions within a convective zone may have an
undesirable influence on the magnetic field structure. Thus, in MHD simula-
tions of solar surface convection open lower boundaries are clearly favoured
(cf. [135]), though evidence has been reported in the literature that for this
type of simulations open upper boundaries should be used as well [50].

6 Scaling Relations and Mixing in Overshooting Layers

Velocity fields in stably stratified layers are quite different from those found
in convectively unstable ones. Wave motions dominate the velocity field fur-
ther away from a convective zone (cf. the discussion in Sect. 4 of [89]). It is
10 From a private communication with M. Steffen.
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important to note that the mixing properties of waves and (advective) en-
trainment are very different, since a coherent oscillation mostly moves fluid
just “back and forth” without much of a change of its position relative to
its local environment (for a thorough study on mass transport and mixing
by waves see [73, 130]). Entrainment by definition means that fluid originally
belonging to a particular layer is engulfed by fluid belonging to an adjacent
layer. This rapidly mixes both layers within the region of entrainment. The
physical picture astrophysicists usually have in mind when they discuss con-
vective overshooting in stars is a variant of this process where up- or down-
flows entrain the radiative layers as plumes, a term borrowed from geophysics.
The mixing is particularly efficient, if the flow is turbulent all the way down
to smallest scales, since complete mixing can then take place on very short
time scales (this has important consequences for turbulent combustion, see
the chapter “Turbulent Combustion in Thermonuclear Supernovae” and the
chapter “One-Dimensional Turbulence Stochastic Simulation of Multi-Scale
Dynamics”). Such behaviour is just the opposite of what is found for waves
which contrary to other coherent structures of a turbulent flow such as plumes
do not fulfill the criterion of efficient mixing used in the definition of turbu-
lence on p. 49. In this sense waves are more akin to laminar flow, even if their
excitation mechanism operates stochastically (cf. Sect. 2.4).

The different mixing capabilities of entrainment and internal (including
gravity) waves have to be taken into account when analysing numerical sim-
ulations with layers characterized by overshooting. The upper layers (above
∼ 0 km) in the solar granulation simulations as discussed in Sect. 5 are a
good example: w2 first decreases also in the simulations with open boundary
conditions (Fig. 6), but above +400 km it increases again. A similar change
occurs for the horizontal velocities (u2 and v2 in Fig. 5). Lowpass filtering can
be used to disentangle wave motions from advection [89]: contributions at fre-
quencies ω > ωc(k) at a given wave number k are removed by a filter applied
to the simulation data, where ωc(k) is a linear function of k corresponding to
a chosen constant (horizontal) phase speed. This type of analysis reveals the
dominant contribution of waves to velocity fields in simulations of the upper
photospheres of stars. In [89] the quantity ρwup/ρ was used to quantify mix-
ing in the photosphere of the Sun and in M-type dwarf stars (the latter have
much lower Teff than the Sun). It measures the outflow through a given layer
by taking into account just regions with upwards pointing vertical velocity.
An exponential decrease of the filtered velocity field as a function of distance
was found in agreement with simulations for the shallow surface convection
zones of A-type stars and white dwarfs [51]. Do these results corroborate a
universal exponential decay law of the vertical mixing velocity?

The simulations in [51, 89, 90], despite their differences in opacity sources
and the convective efficiencies attained inside the convective layers, have about
the same Reeff , a similar Mach number (the coolest stars have the lowest peak
Ma of ∼ 0.06), and rather low Peclet numbers Pe. The Peclet number mea-
sures the importance of convective relative to conductive (or radiative) heat
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transport. It is commonly defined as Pe := (UL)/χ, in which case Pe = Re·Pr.
Since in usual stellar surface (granulation) simulations L/h ∼ 25 . . . 50 (cf.
Sects. 2.1 and 4.2), shear instabilities inside the convection zone cannot be
resolved (Reeff � 200). With Ma ∼ 0.06 . . . 0.6 simulations are still a bit close
to the transonic regime. But most importantly, for the solar case, Pe � 10 at
the top of the convection zone, if we take the data from Sect. 2.1 (cf. Sect. 4.1).
This value is actually the physical Peclet number of solar granulation. Thus,
while Reeff and Preff are limited by the affordable resolution, Pe ≈ Peeff for
simulations of stellar surface convection! In [90] is was noted that the less
regular boundary of granules found for the simulations of atmospheres of M-
type stars is related to the higher Peclet number at optical depth unity by
comparison with the solar case. This is in agreement with the observation
that convective zones in M-type stars extend much higher up into their pho-
tospheres, since molecules play a dominant role in their opacity, which in turn
reduces the radiative cooling at their surfaces and thus increases Pe. Surface
convection zones of A-stars as investigated in [51] represent the opposite case,
as they have Pe � 1 and Ma ∼ O(1) even below the photosphere.

How close is that range of parameters to the case of stellar interiors? For
the lower part of the solar convection zone representative values of Re are
∼ 1014 (Sect. 2.1) and Pr increases in the interior compared to its surface
value. This results in Pe ∼ 106 . . . 107, whereas Ma ∼ O(10−4). Evidently,
simulations of convection at the bottom of the solar convection zone such as
[24] cannot reach realistic Peclet numbers: in their case Pe 
 Peeff . Hence, this
regime is orders of magnitudes away from that one of stellar surface convec-
tion with respect to several parameters. The influence of Pe on overshooting
has been studied in [23]. Although performed for idealized microphysics it
provides valuable insight into the influence of Peeff (and also of Reeff as well
as of rotation, [22]) on overshooting. An increase of Peeff from ∼ 17 to ∼ 145,
as evaluated for the downflows at the bottom of the convection zone, dramati-
cally reduced overshooting (the average penetration depth was reduced by 0.6
pressure scale heights or � 50% in terms of linear distance). The profiles of w2

and entropy changed as well in a way that is neither linear nor exponential,
but clearly non-linear (Figs. 12, 13 and 14 in [23]). The complexity of vorticity
was found to increase with Pe while the filling factor of the downflows became
smaller and flow structures more filamentary. Due to the lower filling factor
the downflowing plumes mix less efficiently in cases with larger Peeff despite
the latter implies less efficient cooling and a reduced exchange of heat with
the environment. This agrees qualitatively with the Reynolds stress model
discussed in [29], which predicts more mixing in overshooting regions, if Pe
is small. In spite of that the interpretation of both models and simulations
is still under debate. Note that the maximum Reeff reached in [23] is around
2200. If we take the definition used here and inspect their Figs. 1 and 11,
Reeff might actually be more close to ∼ 1500. Nevertheless, the simulations
approach the regime where shear instabilities develop.
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How do the predictions for overshooting obtained from simulations com-
pare to Reynolds stress models of stellar convection? Since a large variety
of these models has been proposed, the answer is model dependent. Con-
sider the model published and refined in [26, 27, 35, 36], since it is the
most advanced one that has actually been applied to computations of stel-
lar envelopes (it is also discussed in detail in the chapter “Turbulence in
Astrophysical and Geophysical Flows”). Stationary solutions of the dynam-
ical model equations were found for envelope models of A-stars [77], white
dwarf stars [96], and for models with idealized microphysics [76, 79–81]. A
linear decrease of (w2)0.5 was found in [77, 96] while for some of the simula-
tions discussed in [76, 79–81] it turned out to be non-linear. No counterpart
to the slow exponential decrease reported in [51, 89, 90] was found, even
though we should bear in mind that the quantities used to define the re-
gion of overshooting were different. One possible reason for this difference
is that the Reynolds stress models have not included a detailed representa-
tion of intermittent events, but rather describe what happens to the mean
kinetic and potential energy during convective energy transport. Moreover,
they do not account for waves. In this sense, they can only provide a lower
limit for mixing through overshooting. It is more difficult to tell whether cur-
rent simulations can provide a reliable upper limit for this process. Waves can
break, create turbulence and cause mixing through a number of physical pro-
cesses [130]. Thus, even for cases in which mean molecular weight gradients
can be neglected, the ‘definite recipe’ to model overshooting in stars is still
debated.

7 Conclusions

Convection is just one source of turbulence in stars. Others are related to shear
stresses created by rotation or interaction with stably stratified layers (see the
review in [143] and further contributions in the same volume). The theoret-
ical modelling of convection can benefit from the advances which have been
made in observational astronomy (high precision spectroscopy and photome-
try) and data interpretation (particularly for helio- and asteroseismology). It
can also take advantage of a new generation of numerical simulations which
rely not only on supercomputers but also on more refined numerical methods.
The interaction among these branches of stellar astrophysical research should
be complemented by exchange with other fields such as atmospheric sciences
and oceanography. Stars have a number of properties which distinguish them
from comparable geophysical systems: the extreme vertical stratification due
to a self-sustained gravitational field and their sheer size, as well as the ef-
ficiency of radiative diffusion in comparison with molecular one represented
by very low Prandtl numbers, and the absence of solid boundaries in nor-
mal stars are the most striking differences. There are also special physical
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conditions restricted to particular regions in stars such as the transition from
high opaqueness to transparency to radiation in stellar photospheres and the
dynamical properties of stellar convection introduced through its interaction
with rotation and magnetic fields. In spite of those differences there is also
a large body of common properties such as the coherent network of up- and
downflow structures both observed for the Sun and found in numerical sim-
ulations which very closely resemble their geophysical counterparts [78]. The
simulation techniques used in astrophysics and the geophysical sciences are
hence very similar. This is not surprising, since the dynamics and the de-
velopment of turbulence depend crucially on the approximation of non-linear
advection in the hydrodynamical equations and on the internal degrees of free-
dom the numerical solutions have for a given, finite amount of computational
resources. With stellar convection featuring both high and low Mach number
flows, the numerical methods used are thus similar, as are their strengths and
limitations. The scale dependence of experiments probing the treatment of
unresolved scales is indeed common to laboratory, geophysical and astrophys-
ical flows. It has to be considered with care before passing judgement on a
particular simulation method. The same holds for the correct choice of scales
�. While the Reeff of 2300 suggested in Sect. 4.2 should only be considered as
a guideline (the actual number of grid points required per direction depends
on the numerical method used!), it expresses the necessity to distinguish be-
tween low-resolution simulations, which only represent the flow structure at
large scales, and high-resolution simulations, which explicitly represent dif-
ferent regimes of turbulence on scales larger than the finitely sized grids or
volumes used in the calculations. For the same reason the dynamical range
achieved in 2D and 3D simulations can be quite different at the same res-
olution no matter whether we deal with astrophysical or geophysical flows.
Timescales and boundary conditions are more tied to the specific proper-
ties of the physical systems. Comparing them can nevertheless be instruc-
tive, since the long-term stability and dependence on boundary conditions
are questions more easily analysed with a larger variety of cases. Progress
in the modelling of turbulent convection can thus not only benefit from an
exchange between both the astrophysical and the geophysical sciences on par-
ticular theoretical models, but also by an exchange on numerical simulation
techniques.
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MonAesinos B. (eds.) Theory and Tests of Convection in Stellar Structure,
ASP Conf. Ser., Vol. 173, p. 41. Astron. Soc. Pacific, San Francisco (1999) 67

60. Godunov S.K.: Mat. Sb. 47, 271 (1959) 74
61. Goldreich P., Keeley D.A.: Astrophys. J. 212, 243 (1977) 68
62. Gough D.O., Weiss N.O.: Mon. Not. Roy. Astron. Soc. 176, 589 (1976) 67
63. Grossman S.A., Narayan R.: Astrophys. J. Suppl. 89, 361 (1993) 70
64. Grossman S.A.: Mon. Not. Roy. Astron. Soc. 279, 305 (1996) 70

This copy belongs to 'acha04'



102 F. Kupka

65. Gryanik V.M., Hartmann J.: J. Atmos. Sci. 59, 2729 (2002) 70
66. Gryanik V.M., Hartmann J., Raasch S., Schröter M.: J. Atmos. Sci. 62, 2632
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123. Stein R.F., Nordlund Å.: Astrophys. J. 342, L95 (1989) 58, 62, 64
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1 General Considerations

Turbulence is a physical process that enjoys some unique characteristics, first
among which is the fact that it is among the most ubiquitous phenomena in
the physical world and yet is one of the least understood physical processes.

Let us just consider that all existing stars (the number of which is around
∼ 1023, not far from the Avogadro’s number) use or have used turbulence
during different phases of their lifetime. The atmosphere of the earth, a habitat
in which we spend all our life, is regularly turbulent and so are the oceans.

Much to the surprise of anyone who begins to study the subject, one
finds that the most skillful practitioners at “taming” turbulence are aerospace
engineers who try to minimize the unsettling effects of air turbulence on the
commonly shared assumption that a smooth flight is more exciting than a
bumpy one. But to advance their skills, engineers could hardly afford waiting
for a theory of turbulence to be developed and tested. Wind tunnels provide
much of the needed help for the effects of a turbulent flow on the wings of
an aeroplane which can be examined in detail using repeated experiments.
This leads to quite a satisfactory “description” of turbulence, but that is not
sufficient to build a theory. For example, the huge wealth of spectroscopy
data on absorption and emission properties of gases found a simple, logical
explanation only when the atomic theory was invented and disparate results
were explained by a set of few simple rules. There is not yet an equivalent in
the field of turbulence which among other vicissitudes, is also struggling to
find a proper place in science: it straddles mathematics, physics, engineering,
geophysics and astrophysics. Apocryphal stories tell that W. Heisenberg, one
of the founders of quantum mechanics, who pioneered with N. Kolmogorov
the concept of turbulent viscosity, wanted to ask God what turbulence was
all about, not the structure of quarks, not the true mass of neutrinos, not
the unification of general relativity and quantum mechanics, not the reality of
strings, but turbulence. More historically certain is the assertion by another
great scientist, R.P. Feynman, that turbulence remains the biggest unsolved
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problem of classical physics. Even among professional scientists there is a bit
of conflict as to what turbulence really is. The connotation of the term used in
the political–sociological lexicon gives the impression of something unwanted,
unwelcome and probably to be corrected at the earliest stage, so as to buy
back its opposite, most likely laminarity, a term that however is never heard
in such conversations. And yet, it may be hard to have to realize that at
the slightest provocation, flows leave laminar tranquility and “go turbulent”,
from the easy to observe smoke of a cigarette, to the water flowing from the
tap, to the contrails in the plane’s wake, that is, we see turbulence everyday,
we don’t need expensive laboratory setups to bring it to life. It is there for
all us to see and the facility of its inception should speak volumes as to its
being a most natural of physical phenomenon rather than a strange one. And
yet, it is a matter of fact that all scientists (let’s say of my generation) have
grown up in the cozy world of Maxwell equations, Schrödinger equation, Dirac
equation, the pillars of modern physics which are linear, perhaps unwittingly
creating the impression that, after all, physical phenomena are well described
by linearity. But it was Heisenberg himself, careful observer of linearities in
physics, who tried to modify the linear Dirac equation into a non-linear one
by suggesting that the “mass” say of an electron rather than being an outside
input, ought to be provided by the theory itself leading him to suggest a non-
linear term instead of the mass term. But the natural habitat of turbulence is
not at the atomic level but at the macro level such as the earth’s atmosphere,
the ocean, the stellar interiors, etc., which we shall discuss.

After all, the Heisenberg–Kolmogorov (HK) model of turbulence being
represented by a turbulent viscosity, relies on the very concept of “viscosity”
that doesn’t exist at the level of one particle but only of an ensemble of
many particles. That is why the equations used to describe turbulent flows
are the Navier–Stokes (NS) equations, which are the smoothed-out form of the
Boltzmann equation, but the key difficulties of the latter remain intact and
perhaps acquire an even clearer representation. The NS equations, describing
the collective behaviour of a flow, contain non-linear terms (NLT) which are
at the core of turbulence and the treatment of which has challenged all those
who have dealt with them.

Difficult as it might be to account for them, the NLT have a remarkable
property: they appear under the divergence operator and thus if one integrates
over the volume of the system, the NLT yield zero. Turbulence is somewhat
of a secretive process, an insider that wields much power but that globally
acts only as the perfect transferrer-messenger that actually works for free
(the zero integral just discussed). What does turbulent transfer and is this its
main job? The answer to the latter is yes, as it can be seen by a simple argu-
ment. Consider the non-linear term ∇·uu or u ·∇u (since we are considering
incompressible flows, ∇ · u = 0). If one Fourier transforms the velocity field
u(r) = Σ(k)u(k) exp(ik · r), it is clear that the velocity ui(k) correspond-

ing to the mode k will entail the non-linear term αijmΣ(k’)uj(k’)um(k− k′)
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where k′ are all the modes different than k [104, 111]. If we visualize the
mode k ∼ l−1 with a typical length scale l, it is clear that the dynamics of
that length will be governed by its interactions with all the other modes or
length scales. This non-linear interaction is the one responsible for the trans-
fer process we referred to before. The extent of these “sizes” l is governed on
the large size by the geometrical extent of the flow and at the opposite end
by the molecular sizes which have a dynamics of their own. Contrary to a
laminar flow in which the molecular sizes dictated by molecular forces cannot
be changed (that is to say all molecules have the same sizes, a granularity of
matter that is not under our control), the “molecules” of a turbulent flow,
universally known as “eddies”, span a wide range of sizes: big eddies, midsize
eddies and small eddies (still larger than molecules).

While it is not physically meaningful to talk about the lifetime of a
molecule (at least, not under the effect of an outside force), eddies have dy-
namic sizes and thus dynamic lifetimes, the largest eddies live longer, the
smallest live shorter. The latter begin to be affected by molecular forces, the
largest are still reminiscent of the way turbulence was generated, the type of
geometry in which they move, etc., and therefore neither set of eddies exhibit
“universal properties”, a feature that, if proven to exist, would help simplify
the problem to treat the NLT and allow same kind of a general law to be
formulated. Such a law, which goes with the HK spectrum, will be discussed
shortly, but before that we need to discuss a further important feature of
turbulence. Turbulence is not a physical process such as for example the grav-
itational attraction of two objects, something that we cannot erase, since it is
written in the basic laws of nature. In principle, turbulence could be avoided
entirely by avoiding its inception, a difficult and probably almost impossible
process to manage, but one that has no conceptual inconsistencies. Turn your
tap water very, very slowly and the water will flow laminarly, make air stand
almost still and the smoke of your cigarette will be a long laminar streak,
etc. This is to say, it takes the passing of some kind of a threshold to get
into a turbulent regime. Stated differently, turbulence has to be nurtured into
existence and kept fed with a permanent supply of energy, otherwise it will
die on you. That is often cited as one of the reasons why a turbulence-based
theory of galaxy generation (in spite of the more than interesting similari-
ties between pictures of galaxies and that of frozen eddies) never got off the
ground: nobody has been able to suggest a source of energy that would stir an
initially laminar cosmic gas into a turbulent one long enough for galaxies to
form. Unsustained turbulence will die and a laminar state will follow. While
that is not difficult to prove in nature, it points to another fact, namely that
in any turbulent flow the amount of energy (power to be more exact) that
keeps it alive, will have to show up in all relations, one way or the other.
Since, as we stated earlier, turbulence rearranges things creating a whole new
picture of a flow without however using any energy (a superconductor comes
to mind that transports a current without any irreversible ohmic losses), the
amount of energy you put in at the largest scales is the same that gets to
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the smallest scales which, by contrast, via the irreversible route of friction,
are fully dissipative. Turbulent eddies are energy conserving, molecules are
energy dissipative. The power input-dissipation, traditionally denoted as ε, is
therefore a key feature of any turbulent flow, since it represents the power
that inserted at the largest scales reappears, its magnitude unchanged, as dis-
sipation at the smallest ones. Clearly the size of the eddies that begin to be
dissipation prone varies from flow to flow. In a flow characterized by a large
molecular viscosity, those scales will be much larger than the ones correspond-
ing to a low-viscosity flow. Stated differently, the more viscous the flow, the
smaller will be the range in which turbulence will be able to operate (under
the same stirring force). On the other hand, a low viscosity flow will allow
turbulence to “operate” on many scales, thus the range of turbulence scales
can be quite large. These concepts can be formulated with simple mathemat-
ical relations. First, consider the non-linear interactions we discussed earlier:
when one says that they are important, one means that they are more impor-
tant than other terms in the same equation. From the above arguments, it is
clear that viscosity is at the top of the list of anti-turbulence agents. Thus the
importance of the ratio of the non-linear interaction to the viscosity term, the
so-called Reynolds number:

Re =
u∇u

ν∇2u
= ULν−1 (1)

where U and L represent typical velocity and scale of the flow under consid-
eration. Flows with Re > 103 are considered to be turbulent, a rather modest
value (a car in the street can reach Re ≈ 104 and thus the preoccupation of
car manufacturers to reduce the car’s friction due turbulent flow). With the
two variables ε and ν (the first characterizes the rate of energy input while the
second characterizes the type of fluid we deal with) we can construct (using
only dimensional arguments) a length scale:

ld =
(
ν3ε−1

)1/4
(2)

which represents the typical size of an eddy that begins to feel the eroding
action of viscosity. The larger the viscosity, the larger ld so that for very
large ν, ld can be of the order of the largest possible eddy size in which case
turbulence has no room to develop. Combining (1) and (2) one obtains that
the ratio of the largest to the smallest eddy is given by (using relation (7)
below):

L/ld ∼ Re3/4 (3)

This relation, simple as it might seem, has several consequences the most
important of which is that we can’t hope to solve the turbulence problem
with today’s computers. To do so, (3) tells that we would need to simulate a
number of point (we are considering 3D turbulence):

N ∼ (L/ld)
3 ∼ Re9/4 (4)
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If we use values of Re corresponding to a street car Re ≈ 104, L/ld ≈ 103

that is, we have a “spectrum of eddies” whose dimensions differ by a factor of
103 and to resolve “all the turbulent scales”, we need to account for N ∼ 109

degrees of freedom which is feasible with today’s computers. On the other
hand, in the ocean, atmosphere, stars, etc., we end up with values of N that
are several orders of magnitude larger than what any modern computer can
handle. Thus, one resorts to large eddy simulations (LES) in which one resolves
numerically only the largest scales and models the huge number of numerically
unresolved scales with a sub-grid scale model [21, 23].

2 The Heisenberg–Kolmogorov Energy Spectrum

On the assumption that a group of eddies exists that are small enough com-
pared to the largest ones not to be affected by boundary conditions, size of the
container, specific stirring mechanics, etc., but also large enough not to be yet
subjected to the influence of viscosity, HK reasoned that ν cannot enter the
model, neither can the specific type of stirring: only the amount of power ε
that is injected into the flow to generate the turbulent process must show up.
Under these conditions, and using only dimensional arguments, the turbulent
kinetic energy spectrum E(k) must have the form:

E(k) = Ko ε2/3k−5/3, K =
∫

E(k)dk (5)

where Ko ∼ 1.6 is the Kolmogorov constant. The HK spectrum has been
verified many times using different flows and its universality is now well es-
tablished. Whether it can be derived from the first principle is a different
matter. The kinetic energy turns out to be:

K =
3
2
Ko ε2/3L2/3

[
1 − (ld/L)2/3

]
∼ 3

2
Ko ε2/3L2/3 (6)

The inverted relation:

ε ∼ K3/2

L
(7)

is what we used in joining (1) and (2) to yield (3) with the proviso that
K1/2 ∼ U .

Next, let us consider the dissipation ε. Rather than attributing to it arbi-
trary values, let us consider a real case, that of the rotating but slowing down
earth. The earth’s rotational energy is given by:

ER =
1
2
IΩ2 (8)

where I is the moment of inertia and P = 2π/Ω the rotational period. Due to
the presence of tides, earth’s rotation is slowing down and the length of the
day (l.o.d) correspondingly lengthens. Astronomical data tell us that:
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Ṗ ∼= 2 ms/cy,
(
1 cy = 102 yr

)
(9)

which is used to estimate the rate of loss of rotational energy:

ĖR = I Ω Ω̇ = −2ER Ṗ /P (10)

Using the mass of the ocean 1.3× 1024 gr and the viscosity ν ≈ 10−2 cm2 s−1,
Eq. (2) gives:

ld ≈ 1 cm (11)

Since most of the energy gets dissipated in the upper mixed layer (40–
100 m) of the ocean which is stably stratified and where the eddies are not
very large, we can take a representative value L ∼ 10 m. We then have:

L/ld ∼ 103, Re ∼ 104, N ∼ 109 (12)

Next, consider the sun’s interior. Here we use the viscosity corresponding
to a fully ionized gas given by Chapman [45]:

ν[cm2s−1] = 1.2�10−16T 5/2ρ−1 (13)

If L∗ and M∗ denote the luminosity and the mass of a star, in the solar
case we have ε ∼ L�/M� ∼ O(1) cm2 s−3. Furthermore, at the bottom of
the convective zone we can take the values T ≈ 106 K, ρ ≈ 0.1 g cm−3 and
ν ≈ 1 cm2 s−1. Thus, we obtain:

ld ≈ 1 cm (14)

which is of the same order as the one derived for a very different situation,
Eq. (11).

3 Heat Fluxes: Local and Non-Local Models

Stellar structure codes or their geophysical analogues, ocean and/or atmo-
spheric circulation models, solve the equations for the mean variables, say
mean momentum, mean temperature, mean salinity, mean humidity, etc., de-
pending on the specific problem at hand. The important point is that such
codes, which by necessity have low resolution, cannot “resolve” most of the
scales which must therefore be modelled and yet LES, due to their computa-
tional requirements, cannot be hooked-up to a large scale code. Thus, one must
find a way to model the unresolved scales with a result that is “manageable”.

Towards the end of the nineteenth century, Osborne Reynolds suggested
a procedure to treat the effect of the non-linear interactions on a mean flow.
He suggested that every field ϕ (velocity, temperature, . . . ) be decomposed
into a mean and a fluctuating part:

ϕ = ϕ + ϕ′, ϕ′ = 0 (15)
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Substituting the first of (15) into the equation for the full field, taking the
average and using the second of (15), one obtains the dynamic equation for
the fluctuating components and then finally the equation for the correlations
among fluctuations. For example in the case of ϕ = T + θ, the equation for
the mean temperature reads:

∂T

∂t
+ · · · = − ∂

∂z
wθ︸︷︷︸

turb.heat.flux

(16)

where on the rhs we now have a new function, the correlation between two
fluctuating variables which in this case represents the turbulent heat flux
(in units of cpρ). In the mean velocity equation, one has a similar situation
whereby (U = u + u):

∂u
∂t

+ · · · = −∇ · uu (17)

In general, correlations of the types:

Rij = uiuj (18)

are known as Reynolds Stresses. In the early works, (18) and the turbulent heat
fluxes were treated with phenomenological models of the type (az = ∂a/∂z):

uw = −Km uz, wθ = −Kh Tz, (19)

where the momentum and heat diffusivities, here denoted by Km,h, were
written on dimensional grounds as the product of a velocity times a mixing
length l:

Km,h = wl (20)

In the stellar context, one needs to model Turbulent Convection and in this
respect the Mixing Length Theory (MLT) constructed the heat diffusivity Kh

on a phenomenological basis rather than on a Reynolds stress model [54, 69]. In
that sense, MLT was less well grounded than the turbulence models used in the
engineering context. However, the MLT turned out to be quite successful for
reasons we now discuss. It so happens that in most stellar cases, and certainly
in the sun, convection is actually governed not by heating from below but by
cooling from above, much as it occurs in oceanic convection (the Labrador Sea,
Gulf of Lyon and Weddell Sea where the loss of buoyancy by surface waters due
to both evaporation and winds makes them heavy and thus prone to fall) and
in the earth’s atmosphere when the latter is cloud-capped. It turns out that
in these cases, the flow is a combination of well-organized, narrow, vigorous,
descending “plumes” accompanied by disordered, broad plumes which are the
ones that the MLT modelled. Pioneering studies by Cattaneo et al. [42] showed
that:

Downflows: F (convected) = FKE + cpwθ ≈ 0 (21)

Upflows: F (convected) = FKE + cpwθ �= 0 (22)
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which tell us that the flux of the descending plumes is actually cancelled almost
entirely by the flux of turbulent kinetic energy FKE = wK leaving only the
upflows which are what the MLT describes. Later studies showed that the
situation is more complicated in the sense that the convective layer should
have stable layers on both sides whereas the one studied by Cattaneo et al.
[42] does not (it has fixed plates as boundary conditions). In the simulation
of Chan and Gigas [44], there is an extended stable layer at the bottom of the
convective zone and a tiny stable layer at the top. In this case the cancellation
(21) is only 30%. The conclusion seems to be that the net flux contribution
from the downflows is not zero and is directed upward and since the enthalpy
flux (up) is about 50% of the total flux, and the convected flux (up) is about
two-thirds of the total flux, one could argue that within a factor of about 2,
an MLT type convective model may be a good rough estimate for the total
convective flux. To estimate the latter, one may employ the second of (19)
and express Kh in terms of the main parameters of the star. One of them is
the rate of radiative cooling by rising blobs characterized by a time scale tχ
and the other is the time scale tb on which buoyancy operates:

tχ = l2/χ, tb = (gαβ)−1/2, S = (tχ/tb)2 = gαβl4χ−2 (23)

Here, Kr = cp ρχ is the radiative conductivity (the radiative flux is
−Kr ∂T/∂z), β = −∂T/∂z + (∂T/∂z)ad and α is the volume expansion coef-
ficient. When S < 1, convection is inefficient since the buoyancy time is long
enough to give the opportunity to radiative processes to cool off the blob of
gas while it rises; the case of efficient convection is when the opposite is true,
the buoyancy time is so short that the blob rises before it loses its heat content
due to radiative processes. In those two cases, the MLT gives the following
results:

Effective Convection: S >> 1, Kh/χ ∼ S1/2 (24)

which is quite natural since when radiative processes are slow and inefficient,
χ should not enter the problem which implies a S1/2 dependence. When the
opposite is true and convection is inefficient, the MLT gives:

Inefficient Convection: S << 1, Kh/χ ∼ S2 (25)

The full MLT [22, 54, 69] yields an expression for Kh/χ of the form:

Kh/χ ∼ S−1
[
(1 + S)1/2 − 1

]3
(26)

that embraces both limits (24, 25). We must note that (26) was derived from
a turbulence model [22, 26, 28] and that improvements of (26) were also
proposed [29] and tested [3, 55, 141]. The cancellation described by (21) does
not mean however that in (22) we can neglect FKE. To understand its physical
meaning and implications, consider Fig. 1 below in which we have sketched an
eddy as a spherical blob of the same size of the region in which it is formed.
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H

Fig. 1. An eddy as a spherical blob

Can such a large eddy exist? In an unstably stratified situation, buoyancy
overpowers gravity (so to speak) and thus it is quite possible to have eddies
of the size of the “container”. On these grounds, one would expect that such
height, called H in the sketch, should appear explicitly in the expression for
the heat flux but if one looks at the second of (19) which expresses the heat
flux (J = wθ) as:

Local: J(z) = −Kh(z)
∂T (z)
∂z

(27)

one observes that there is no H and therefore (27) cannot be complete. It is so
because it represents the flux with only local variables, in fact, J(z) is given
by the temperature gradient and the diffusivity computed at the same z. It
is a local flux that does not account for the fact that there are large eddies of
the size of the “container”. One way of constructing a non-local flux is to use
an expression of the type:

Non-local: J(z) = −
∫ z

0

∼
Kh (z, z′)

∂T (z′)
∂z′

dz′ (28)

which implies that the flux at every height z is contributed by all the fluxes
below it and at z = H, the upper limit brings in the height H of the convective
region. The author is not aware of any explicit expression for the non-local
“kernel” heat diffusivity

∼
Kh (z, z′).

It is not difficult to find out what a non-local term looks like, a result
that the RSM to be discussed later will justify. The dynamic equation for any
variable (e.g. a mean temperature or a second-order correlation such as the
heat flux J) has the general form:

∂A

∂t
+ ∇ · uA = sources-sinks (29)

Suppose A = J and consider only the z-dimension. We have:

∂J

∂t
+

∂wθw

∂z
=

∂J

∂t
+

∂w2θ

∂z
= sources-sinks (30)

Next, consider stationarity which leads us to:

∂w2θ

∂z
= sources − sinks (31)
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The message is quite clear: the term on the lhs of (31) representing the d/dz
of the flux of the heat flux, has a very clear physical interpretation: turbulence
not only creates non-zero correlations such as J but it also transports them
via the term on the lhs which represents non-locality: in fact, even if the
“sources” on the rhs were zero, the non-local term on the lhs could act as
a source that balances the sink. That is to say, in places where there may
not be a local source of turbulence, there may nonetheless be mixing which,
originated somewhere else in the flow, is transported there by the term on the
lhs. In the case A = K, turbulent kinetic energy, the equivalent of (31) reads:

∂FKE

∂z
= gαJ − ε, FKE ≡ wK (32)

where FKE is the flux of kinetic energy which we already introduced in
Eqs. (21) and (22). In this case we have also specified the source, buoyancy and
re-introduced the rate of dissipation ε which we discussed in Sect. 2, Eq. (5).
FKE is a third-order moment the closure of which will be discussed in detail
later. At this point, suffices it to say that the local limit of (32) corresponds
to assuming:

gαJ = ε (33)

which, once Eq. (7) is used, together with a “ballistic model” for K, gives rise
to the MLT model, Eq. (26), the validity of which we have already discussed
[22]. It is a simple exercise to reproduce the S >> 1 limit Eq. (24) from (33).
For the reasons given earlier in Sect. 1, the rate of dissipation must equal the
rate of injection which can be written as:

ε ∼
∫

n(k)E(k)dk (34)

where n(k) is the growth rate of the convective instability for which there
exists a complete expression [29]. We shall limit ourselves to the strong limit
in which case (see (23)):

n(k) ∼ (gαβ)1/2 (35)

Using the HK spectrum in (34), Eq. (33), once (27) is used, gives rise to
(24).

A simple non-local model. Let us now consider the non-local term (31)
which we express as:

∂w2θ

∂z
∼ H−1w�J� (36)

where the subscript  represents some fiducial value. What is relevant here
is the presence of H which, as we discussed earlier, is the hallmark of non-
locality. In the planetary boundary layer (PBL) case, Deardorff [57] suggested
the expressions:

w� = [gαHJ�]1/3, J� = Js (37)
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where the fiducial values are taken to be the surface values (subscript s) of
the heat flux. As we shall prove later but seems physically obvious, we now
have that the total heat flux is given by [76, 77]:

J(z) = JL(z) + JNL = −Kh
∂T

∂z
+

c

H
τw�J� (38)

where c is a numerical constant. Use of (38) has considerably improved the
description of the PBL. Results from a coupled ocean–atmospheric models
show that the non-local mixing model raises the maxima of the relative hu-
midity and cloud cover in the tropics from the lowest atmospheric layer to
about 900 mb in agreement with observations. No stellar test has yet been
made of (38).

In conclusion, the LES data of Cattaneo et al. [42] and Chan and Gigas [44]
suggested an interesting cancellation occurring in the downflows leaving be-
hind the disordered upflows described by the MLT or improvements of it. That
may explain the success the MLT has enjoyed in stellar structure/evolution
studies over many years. The MLT is however a local theory and thus incom-
plete since in unstably stratified regimes nonlocality plays a major role. The
next challenge is to account for nonlocality with the Reynolds Stress Model.

4 Overshooting Regions, OV

Outside the unstably stratified Convective Zone (CZ) there is a dynamically
important stably stratified region referred to as overshooting region (OV)
which has attracted a great deal of interest [5, 134, 135, 154]. In Fig. 2 we
present a simple sketch of the stellar CZ together with the ocean (stable strat-
ification is the norm) and the earth’s atmosphere where in the daytime one
has unstable stratification (heated from below) and the opposite at night.

A key question is, what is the source of turbulence in a stably stratified
regime? Consider first the earth’s oceans which are a large body of a stably

< > < >

Fig. 2. Comparison of stratifications
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stratified fluid since by and large cold, denser waters are at the bottom and
warmer, lighter waters are on top. Without external disturbances, such a fluid
would have no reason to mix and become turbulent which, on the other hand,
is the true state of the ocean. The main source of the strong mixing is the
shear produced by the external wind. Without mixing, there would be no
upwelling of nutrients of which deep waters are rich, and a dead sea would
ensue.

What about the stellar OV, say in the Sun? The two most obvious sources
are: 1) differential rotation (which we call shear) and 2) non-local flow from
the CZ, that is, the transport of turbulent kinetic energy represented by the
term FKE in (32) which we now generalize to:

∂K

∂t
+

∂FKE

∂z
= −Rijui,j − gJρ − ε (39)

We have added a time dependence of K on the left, the production of K
due to interaction of shear (ai,j = ∂ai/∂xj) with the Reynolds stresses and
generalized the heat flux to the mass flux:

Jρ = ρ−1
0 ρw = −αTJh + αμJμ = −ρ−1

0 Kρ
∂ρ

∂z
= g−1KρN

2 (40)

where αT = −∂ ln ρ/∂T , αμ = +∂ ln ρ/∂μ and N2 = −gρ−1
0 ∂ρ/∂z.

Because in a stably stratified regime N2 > 0, Jρ > 0 in the absence of
shear the rhs of (39) is negative. In this case, the only way to satisfy (39)
is by having a negative gradient of the flux of K, a non-local term. In the
presence of differential rotation, the first term on the rhs is positive (source)
and, together with a negative lhs, constitutes a second source of mixing. The
often discussed gravity waves (whose power Πgw was computed by Kumar et
al., [87]) are in effect an energy flux that originates from the CZ and thus,
they may be interpreted as part of the lhs of (39). If we adopt (19) and (40),
Eq. (39) becomes (Σ2 = u2

,z + v2
,z):

∂K

∂t
+

∂FKE

∂z
= KmΣ2 −KρN

2 − ε = KmΣ2
(
1 − σ−1

t Ri
)
− ε (41)

where the Richardson number and the turbulent Prandtl number are de-
fined as:

Ri =
Sink

Source
=

N2

Σ2
, σt =

Km

Kρ
(42)

There are physically justifiable reasons why in stably stratified flows, a
local model may not be as poor an approximation as in the unstable case
primarily because eddies are generally small in the stable case and thus more
justifiably described by a local model. In that case, (41) becomes:

KmΣ2
(
1 − σ−1

t Ri
)

= ε (43)
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which we can interpret by saying that the mixing caused by shear has to
“work” against a naturally stable fluid and the dominance of the source over
the sink (the stable stratification) is largely dictated by the flux Richardson
number σ−1

t Ri. This has given rise to a set of confusing statements over the
years about the “critical Ri” above which the source can no longer sustain
the eroding action of the sink (stable stratification). Miles [114] and Howard
[78], using linear stability analysis, showed that RiL =1/4 denotes the point
at which laminarity ceases to exist, that is, when the flow becomes linearly
unstable. After that, the system first enters a weakly non-linear regime and
then finally a turbulent state where non-linearities dominate. Woods [180]
was the first to give a physical picture of the different regimes leading to
turbulence. Given a stable laminar sheet of thickness h, Kelvin–Helmholtz
instabilities gradually erode and entrain fluid parcels above and below h. The
process leads to an increase of h which ceases when the thickness has become
four times the original value h. Woods concluded that “since the final thickness
is nearly four times the original value, the final Richardson number is also four
times the value prior to the instability”, that is, the inception of turbulence
occurs approximately at:

Rit = 4RiL ≈ O(1) (44)

Abarbanel et al. [1] carried out a stability analysis with the inclusion of
non-linearities, and concluded that the instability occurs at the value given
by (44).

In oceanography, where local models are widely used [35, 37], Martin [109]
showed that treating Ricr (defined as the value at which turbulence ceases)
as an adjustable parameter, values around 1/4 were unable to reproduce the
depth of the ocean mixed layer while if one adopted values around unity,
the data could be reproduced quite correctly. In other words, Ricr = 1/4
underestimated the extent of turbulence.

In spite of this collective evidence, most authors dealing with stable strat-
ification in stellar interiors used Ri=1/4 as the critical value which, as just
remarked, underestimates the extent of turbulent mixing [105, 106, 143, 163,
186].

Due to the physical role played by Ri, it is clear that the intensity of tur-
bulence must decrease with Ri and many heuristic expressions were proposed
over the years primarily because no good theory was available. In 2001–2002,
Canuto et al. [35, 37] worked out a model for turbulence under stable strati-
fication and shear that quite naturally reproduced (44) as the point at which
turbulence has so decreased from its value as to become practically zero. The
model also includes Double Diffusion (DD) processes which in the ocean can
be quite important (see next section).

In conclusion, while in the ocean’s mixed layer the source of mixing is well
known (shear), in the stellar OV the situation is more complex since one can
think of at least three possible sources and one possible sink.

Sources: Differential rotation (Shear), gravity waves, non-local K-fluxes.
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Sinks: a μ-gradient ∇μ > 0 (a positive ∇μ ∼ ∂μ/∂P corresponds to a
mean molecular weight that is large at the centre and low at the surface)
acts to increase the local dissipation (as we shall show) thus reducing the
penetration of turbulence into the OV region.

5 Semi-Convection and Salt-Fingers: Double Diffusion
(DD) Processes

Double diffusion processes occur when two different fields exist which have
very different kinematic diffusivities. In stars we have the fields (T, μ) where
the latter is the mean molecular weight. In oceanography, one has (T, S) where
the salinity field has a kinematic diffusivity that is two order of magnitude
smaller than heat. Such processes are also referred to as thermohaline and/or
thermosolutal convection. When both T and S increase from the ocean surface
towards the bottom the result is cold, fresh water over warm, salty water. The
S field is stable, the T field is unstable (heavy at the top) and one has diffusive
convection [81, 82, 108, 145, 170–172]. Examples are lakes, water underneath
an ice island and the Red Sea.

In stars, diffusive convection is called semi-convection and was studied
by several authors [72, 92–94, 153, 155, 158, 159, 161, 162, 174]. Yet, there
does not seem to be a generally accepted procedure to treat the phenomenon.
Stothers [159] critically analysed 11 different prescriptions and concluded that
only two were physically acceptable: one used by Schwarzschild and Harm
[146], who adopted the Schwarzschild criterion, and the other by Sakashita
and Hayashi [139] who adopted the Ledoux criterion [100]. In the absence
of a turbulence model, Langer et al. [92–94], suggested a phenomenologi-
cal model that we shall discuss below. Merryfield [112] found that none of
his two-dimensional numerical simulations exhibited any close resemblance
to the models by Stevenson [159] and/or Spruit [156] and that the closest
similarity is with a Langer et al. model. Xiong [183–185] and Grossman and
Taam [72] carried out non-linear studies of semi-convection which is char-
acterized by the conditions (∇ = ∂ lnT/∂ lnP , ∇ad = (∂ lnT/∂ lnP )ad,
∇r = (∂ lnT/∂ lnP )rad, ∇μ ≡ ∂ lnμ/∂ lnP ):

∇−∇ad > 0, ∇μ > 0, ∇r > ∇ (45)

and thus:
∇r > ∇ > ∇ad (46)

When both the T and S fields increase from the bottom to the top of the
ocean, the result is warm, salty water over cold, fresh water. Since the T field
is stable while the S field is unstable (heavy at the top), the latter causes an
instability called salt fingers. An example is the Atlantic Ocean underneath
the Mediterranean outflow of very salty water. In astrophysics, this instability
occurs when a layer with a higher μ lies above a region of lower μ, for example,
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when the He flash does not occur at the centre of a star [166]. Salt fingers were
first suggested by Stothers and Simon [160] and later studied by Ulrich [173]
and Kippenhahn et al. [85]. The μ field causes the instability, while ∇−∇ad

plays the role of a stabilizing gradient. Salt fingers are characterized by the
following conditions:

∇−∇ad < 0, ∇μ < 0, ∇r < ∇ (47)

and thus:
∇ad > ∇ > ∇r (48)

For semiconvection and salt fingers, Rμ = ∇μ(∇−∇ad)−1 is the stability
parameter. Since:

N2 = gH−1
p [∇μ − (∇−∇ad)] (49)

where Hp = p/gρ is the pressure scale height, we can distinguish between the
following cases:

Ledoux stable: N2 > 0, ∇μ > ∇−∇ad, Rμ > 1 (50)
Ledoux unstable: N2 < 0, ∇−∇ad > ∇μ, Rμ < 1

We further have:

Semi-convection:∇−∇ad > 0, ∇μ > 0, Rμ > 0
Ledoux stable: N2 > 0, ∇μ > ∇−∇ad, Rμ > 1 (51)

Ledoux unstable: N2 < 0, ∇−∇ad > ∇μ, Rμ < 1

Salt fingers: ∇μ < 0, ∇ad −∇ > 0, Rμ > 0
Ledoux stable: N2 > 0, ∇ad −∇ > |∇μ|, Rμ < 1 (52)

Ledoux unstable: N2 < 0, |∇μ| > ∇ad −∇, Rμ > 1

The Ledoux vs. Schwarzschild criteria were discussed in Canuto [24] who
developed and solved a RSM that includes:

1. salt-fingers
2. semi-convection
3. solid and differential rotation

Some interesting results will be discussed here. Using (40) and (49), Eq.
(39) without shear becomes:

∂K

∂t
+

∂FKE

∂z
= gH−1

p [Kh (∇−∇ad) −Kμ∇μ] − ε (53)

whose local limit is then:

gH−1
p [Kh (∇−∇ad) −Kμ∇μ] = ε (54)
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Fig. 3. Semiconvection. The ratio Kh/χ vs. Γ for different values of rμ. The rμ = 0
case corresponds to the standard local model of convection

which is the generalization of (33) to include a μ-gradient. The algebraic
expressions for the two diffusivities Kh,μ were derived in Canuto [24]. From
(45, 47) wee see that in the presence of a μ-gradient, semi-convection acts like
a sink while in the case of salt-fingers, it acts like a source. In Fig. 3 we plot
the ratio Kh/χ which is now a function of the two parameters rμ, Γ defined
as follows:

rμ = ∇μ(∇r−∇ad)−1, Γ =
8π2

125
[Ap (∇r −∇ad)]1/2

, Ap = gΛ4H−1
p χ−2 (55)

where Γ can be viewed as a convective efficiency (within a factor of order
unity, Λ is the same as L in (7). As expected on physical grounds, in the
rμ = 0 case (no semi-convection), the heat diffusivity grows quite rapidly
with Γ . On the other hand, in the case of semi-convection, the growth with
Γ is considerably reduced. In Fig. 4 we plot Kμ vs. rμ, Γ . One can compare
the results of Fig. 4 with the empirical relations suggested by Langer et al.
[92] and Woosley et al. [181]:

Kμ/χ =
1
6
αsc(Rμ − 1)−1 (56)

where the efficiency factor αsc was determined to be 0.008 < αsc < 0.05.
Salasnich et al. [140] suggested the expression:

Kμ/χ = α−1
2 = (50 − 100)−1 (57)

while Eggleton [61, 62] proposed the law:
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Fig. 4. Semiconvection. Turbulent concentration diffusivity (Kc ≡ Kμ)

Kμ ∼ r−n
μ , n > 1 (58)

It is clear from Fig. 4 that the RSM can reproduce these empirical laws and
gives more information. For example, to reproduce (57), we read from Fig. 4
that rμ ∼ 2 − 3 which imposes a further constraint on the model.

6 OV and DD

Quantifying the effect of DD on the extent of OV is an interesting and thus
far quantitatively unexplored problem that was analysed in Canuto [24]. The
gist of the qualitative argument can be seen rather directly by considering
(41) written as:

∂K

∂t
+

∂FKE

∂z
= KmΣ2 + gH−1

p Kh(∇−∇ad) − εeff (59)

where:
εeff = ε + gH−1

p Kμ∇μ ≡ Qε (60)

Since εeff > ε, semi-convection increases dissipation and causes a smaller OV
extent.

7 Effect of Rotation on DD and the OV

Though rotation is an important factor in stellar structure and evolution, its
effects on mixing is still not fully understood. In unstably stratified regions
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where ∇ − ∇ad > 0, the presence of shear in the rhs of (59) helps boost
the turbulent mixing while the presence of a positive μ-gradient increases
dissipation and thus reduces the mixing. In stably stratified regimes ∇−∇ad <
0 such as the OV, all the terms in the rhs of (59) except the first, are negative
and act like sinks. It is therefore important to have both shear and the kinetic
energy flux.

8 The Extent of the OV Region

One question that has remained theoretically unanswered is the extent of the
OV which, among other things, depends on how it is defined. Though several
suggestions were made, none is particularly attractive since they do not take
into account the physical fact that the OV is primarily a region of extended
mass flux. We shall therefore suggest the following picture. Consider the mean
density equation:

∂ρ

∂t
+ uh∇hρ + w

∂ρ

∂z
= −ρ0

∂Jρ

∂z
(61)

where uh, w are the mean flow velocities. In the stationary case and consid-
ering only the vertical velocity, we have:

w = −ρ0

ρz

∂Jρ

∂z
=

∂Kρ

∂z
+ Kρ

ρzz

ρz

(62)

where we have used (40). We suggest to view the OV as a region of additional
mass transport which ceases when the vertical mass flux velocity w vanishes,
which occurs at a z� where:

∂

∂z
(lnKρ + ln ρz) = 0 (63)

a proposition that has not yet been tested in a stellar code.

9 Transport of Angular Momentum: The 7Li Problem

Thus far, this important problem has been treated in a way that is not fully
satisfactory for the following reasons. Consider the angular momentum equa-
tion [63]:

∂

∂t
(ρL) + ∇ · (ρFL) = 0 (64)

where FL is the vector flux of the angular momentum L while Ω0 is the
solid-body rotation (Γ ≡ sin θ):

F r
L = Lur + rΓRrϕ, F θ

L = Luθ + rΓRθϕ, L = Γr2Ω0 + Γruϕ (65)
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As one can see, one needs two Reynolds stresses Rrϕ = uruϕ, Rθϕ = uθuϕ.
After integration (or averaging) over θ, the equation that is usually considered
is the following [43, 127, 187]:

∂

∂t

(
r2Ω

)
= r−2 ∂

∂r

(
r4Km

∂Ω

∂r

)
+ · · · (66)

where the momentum diffusivity was introduced in the first of (19). Though
(66) is generally referred to as a “diffusion equation”, it is not since the latter
has the form:

r−2 ∂

∂r

[
r2Km

∂

∂r

(
r2Ω

)]
(67)

Equations (66) and (67) give similar results only for an Ω that varies with
r like a power law. From helio-seismological data we have however learned that
Ω is differential in the CZ but below it, it becomes Ω=constant [32, 167]. In
that region, also known as the tachocline [154], Eq. (66) yields a zero rhs while
(67) does not. To understand the origin of such different equations, consider
the more general equation in terms of the Reynolds stresses:

∂

∂t

(
r2Ω

)
= −r−2 ∂

∂r

(
r3Rrϕ

)
+ · · · (68)

If one employs the first of (19) which in this case becomes:

Rrϕ = −KmΓ r
∂Ω

∂r
(69)

and substitutes it into (68), one recovers (66). Is there anything wrong with
(19) or (69)? Consider the following. Since the mean velocity u is a vector,
one can construct with it two independent tensors that represent shear and
vorticity:

Σij =
1
2

(ui,j + uj,i) = Shear, Vij =
1
2

(ui,j − uj,i) = Vorticity (70)

and therefore, the Reynolds stresses must be of the form:

Rij = f (Σij , Vij) (71)

Equation (69) corresponds to having used shear but not of vorticity, while
the inclusion of both gives rise to a new angular momentum equation:

∂

∂t

(
r2Ω

)
= Ar−2 ∂

∂r

(
r4Km

∂Ω

∂r

)
+ Br−2 ∂

∂r

(
r2Km

∂

∂r

(
r2Ω

))
+ · · · (72)

where the coefficients A and B can only be provided by a complete model of
the Reynolds stresses. The last term in Eq. (72) is just (67) and represents
the first modification Eq. (66). There are other modifications as well and thus
we extend (71) to the more general form:
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Rij = f

⎛

⎝Σij , Vij ; buoyancy, gravity waves; ur, uθ︸ ︷︷ ︸
mer.curr.

⎞

⎠ (73)

where the buoyancy flux (or mass flux) is defined as:

Bi = −gρui → (∇T,∇μ) (74)

and is characterized by the two gradients of temperature and mean molecular
weight. Finally, the presence of gravity waves can be accounted for by adding
the flux Πgw [87] to the source on the rhs (39).

The complete expression (73) was derived and expressed in algebraic form
by Canuto and Minotti [36]. For example, the new form of the Reynolds stress
Rrϕ = uruϕ reads:

Rrϕ = A1 [Ω0 + Ω(r, θ)] + A2Γ
∂Ω

∂θ
+ A3Γr

∂Ω

∂r
+ A4Brϕ + Emer (75)

This expression contrasts quite significantly with (69) which has only the
A3-term. It is important to stress that the second Reynolds stress Rθϕ = uθuϕ

exhibits the same structure (75). Salient new features in (75) are the presence
of rigid rotation (first term), of the meridional currents (last term) and the
buoyancy flux (last but one term) which depends on both the T and μ fluxes
thus including the transport by DD processes. Some of the new terms in (75)
have been accounted for in heuristic models [137].

These considerations may be relevant to the important problem of 7Li
[46, 86]. The basic facts are well known: big bang nucleosynthesis predicts a 7Li
abundance that is too high compared to what is observed in the oldest stars in
the galaxy. Recent measurements by Korn et al. [86] suggest a solution: these
old stars have destroyed part of their pristine 7Li [46] via diffusive processes
that have brought 7Li to regions hot enough to have caused its burning. In
other words, turbulent mixing is now deemed responsible for the discrepancy
between big bang predictions and stellar observations. Ad hoc mixing models
have been suggested that can explain the data but the problem remains since
the physical processes underlying the mixing (one or many) are still unclear.
The inclusion of several physical processes, as formally written in (73), may
be a good starting point to sort out which of these processes or a combination
of them, is capable of explaining the new data.

10 Reynolds Stress Model: Buoyancy Only

It was the Russian mathematician A.A. Friedmann (the same of the Fried-
mann universe) who at a mathematical conference towards the end of the
1920s suggested that if the NSE yield dynamical equations for the mean com-
ponents, they also yield the equations governing the fluctuation’s correlations
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such as the Reynolds stresses, the turbulent heat flux, etc. The Reynolds Stress
Model (RSM) could have been born then, but that was not to be. One had to
wait until 1940 when the Chinese physicist P.Y. Chou [52] published the first
dynamical equations for the Momentum Reynolds Stresses. He treated mostly
shear flows and the engineering community has since then used the RSM as a
working tool. The successes of the RSM in that field are well documented and
there is no need to dwell on them. Suffices to say that closure problems still
exist especially concerning the pressure correlations, but the work of many
groups has considerably narrowed the uncertainties.

In Canuto [20], a detailed derivation of the RSM equations was presented.
For the buoyancy only case, the second-order moments of interest to stellar
structure studies are the turbulent kinetic energy K, the heat flux J = wθ,
the temperature variance θ2 and the kinetic energy in the z-direction 1/2w2

whose dynamic equations are [20, 33, 34, 37]:

∂K

∂t
+

∂FKE

∂z︸ ︷︷ ︸
non-locality

= gαJ − ε (76)

∂

∂t
w2 +

∂w3

∂z︸︷︷︸
non-locality

=
2
3
(1 + 2β5)gαJ − 2

3
ε− 5τ−1

(
w2 − 2K

3

)
(77)

∂J

∂t
+

∂w2θ

∂z︸ ︷︷ ︸
non-locality

= −w2Tz + (1 − γ1)gαθ2 − τ−1π−1
4 J (78)

∂θ2

∂t
+

∂wθ2

∂z︸ ︷︷ ︸
non-locality

= −2JTz − 2θ2π−1
5 τ−1 (79)

where the dynamical time scale is defined as τ = 2K/ε and the equation for
dissipation is given by (c1 = 2.88, c2 = 3.8):

∂ε

∂t
+

∂wε

∂z︸︷︷︸
non-locality

= c1gαJτ
−1 − c2ετ

−1 (80)

with wε = 3/2τ−1FKE with FKE = wK. The suggested values of the constants
are:

β5 = 1/2, γ1 = 1/3, π4 = 0.084, π5 = 0.72 (81)

The first consideration to be made is that these equations are all linked
together. To solve the equation for the heat flux J , one needs to know the
temperature variance θ2 and w2 which are given by two other equations. In
the stationary and local limit, Eqs. (76), (77), (78) and (79) become algebraic
and the solution has the MLT form [33]. To carry out the next step, consider

This copy belongs to 'acha04'



128 V.M. Canuto

(78) and neglect the temperature variance θ2 since in an unstably stratified
situation, the potential energy, which is proportional to θ2, transforms into
kinetic energy. We have:

J = −π4τw2
∂T

∂z
− π4τ

∂

∂z
w2θ = JL + JNL (82)

We can observe that (38) is just a simplified form of Eq. (82). For the use
of these equations in stars, see, Kupka [89], Kupka and Montgomery [90] and
Montgomery and Kupka [117].

11 Non-locality: Third-Order Moments

Clearly, each of (76), (77), (78), (79) and (80) entails a third-order moment
(TOM) and (36) can only be a rough approximation. To obtain a more physical
expression for the TOMs, one begins with the TOMs dynamical equations
([20], Eq. 55). For example, in the case of buoyancy forces only, the equation
for w3 reads:

∂

∂t
w3 = − ∂

∂z
w4
︸︷︷︸
FOM

+3w2
∂w2

∂z
+ 3gαw2θ − 2c8τ−1w3 (83)

which shows that, to proceed, we need to model the fourth-order moment
(FOM), w4.

11.1 FOMs: Previous Models

Most previous FOM models [6, 7, 13, 20, 30, 50, 116, 123, 124, 164, 188]
employed the quasi-normal approximation, QNA, whereby abcd = ab cd +
ac bd + ad bc. For example, we have:

w4|QN = 3w2
2
, w3θ|QN = 3w2 wθ, w2θ2|QN = w2 θ2 + 2wθ

2
(84)

In the convectively unstable case, the QNA is known to suffer from re-
alizability problems, that is, the resulting TOMs contain denominators that
become zero at some critical τ2N2 ∼ −20, N2 = gα∂T/∂z, which easily at-
tains in a convective PBL. To prevent this from happening, Canuto et al. [34]
proposed an ad hoc procedure to limit the value of τ2N2 in the unstable case;
as a result, the eddy sizes are chopped down and the transport is weakened.
In the stable case, Moeng and Randall [116] pointed out that (83) under QNA
leads to a “wave equation”:

∂2

∂t2
w3 = 3gα|∂T/∂z|w3 + other terms (85)
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with an oscillation frequency of

f = (3gα|∂T/∂z|)1/2 (86)

which occurs in the upper part of the convective PBL. Similar “wave equa-
tions” resulted from other TOM equations. The oscillations generated by these
“wave equations” are not observed in nature and are therefore spurious.

11.2 FOMs: New Model

Since the QNA (with zero-cumulants) causes singular behaviours of the
TOMs, a more physical FOM model with nonzero cumulants was proposed
and tested by Cheng et al. [51]. In principle, to formulate a new FOM model,
one could try to solve the dynamic equations of the FOMs, but this would
bring about a new set of parameterizations for the pressure and dissipation
terms, and most of all, the need to model the fifth-order moments. A new
model was therefore proposed [51] which we briefly sketch here. First, from
the TOMs dynamic equations one subtracts the QNA part leaving behind the
dynamic equations for the cumulants. For example, one has:

∂

∂z

(
w4 − w4|QN

)
= −2c8τ−1w3 + 3gαw2θ − 3w2

∂

∂z
w2 (87)

Next, it was assumed that the FOMs can be modelled by linear combina-
tions of the TOMs, an assumption that assures that in the Gaussian limit,
the TOMs vanish and the FOMs acquire the QNA form. For example, it was
assumed that:

∂

∂z

(
w4 − w4|QN

)
= p1τw3 (88)

The constants that appear in expressions like (88) were chosen so that
(87) and (88) best match the full expressions (83), using as input the LES
simulation data for the TOMs and SOMs of Mironov et al. [115]. Most im-
portantly, use was made of new aircraft data on the FOMs by Hartmann et
al. [75], to further determine these constants. The “best” values are listed in
Table 1 of Cheng et al. [51]. The choice of such constants helps provide ad-
equate damping that was lacking in previous models and effectively cancels
the β ∼ ∂T/∂z terms in the TOM equations, a choice supported by the TOM
equations and the DNS data [89]. In addition, the cancellation of the β terms
not only greatly simplifies the TOM equations, but also avoids the singulari-
ties in the unstable case and eliminates the source of the spurious oscillations
in the stable case.

To assess their validity, the new FOMs were compared with measured data
by plotting the modelled FOMs with the SOMs and TOMs from the LES data
[115] as input, vs. z/h (h is the PBL height). In Fig. 5, the thick solid lines
represent the new model results, the filled circles represent the aircraft data of
Hartmann et al. [75], the dashed and dotted lines represent the model results
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Fig. 5. In (a–d), the normalized FOMs are plotted vs. z/h in a convective PBL,
using the LES data of Mironov et al. [115] for lower order moments as input. The
solid lines represent results from the present FOM model, the dashed lines represent
results from the recent model of Gryanik and Hartmann [73] and the dotted lines
represent the QNA. The filled circles are the aircraft data of Hartmann et al. [75]. In
(e) the kurtosis of w is plotted vs. z/h. The thick solid line represents the result from
the new model, the dashed line represents the result from the model of Gryanik and
Hartmann [73] and the dotted line represents the QNA, for comparison the aircraft
data are the filled circles. In (f) the w-kurtosis Kw is plotted vs. w-skewness Sw,
using the new model (thick solid line), the model of Gryanik and Hartmann ([73],
dashed line) and the QNA (dotted line), for comparison the aircraft data are the
filled circles and the empirical formula Kw = 2.3 (S2

w + 1) is the thin solid line
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of Gryanik and Hartmann [73] and QNA respectively. The kurtosis of w from
the models and from the aircraft data is plotted in Fig. 5e. To help assess the
improvement shown in Fig. 5e, we refer the reader to the measurements of w-
kurtosis by Lenschow et al. [102, 103] who stated that “The kurtosis increases
with height from around 3 to about 5 near 0.9 z/zi. Above it, the kurtosis
increases sharply”. In Fig. 5f we plot the w-kurtosis Kw vs. the skewness Sw

from the new model (thick solid line) and from Gryanik and Hartmann [73]
(dashed line) to be compared with the aircraft data (filled circles) and with
the empirical formula ([2], thin solid line)

Kw = 2.3 (S2
w + 1). (89)

Judging from the comparisons with these data, the new model exhibits
significant improvements over the QNA and the Gryanik and Hartmann [73]
model.

11.3 New TOM Model with New FOMs

Next, one employs the new FOMs into the TOM equations. The resulting
equations are simpler than in previous models and more importantly, they are
singularity-free. They are given by Eqs. (9a–f) of Cheng et al. [51] which we
don’t reproduce here. Suffices it to say that in the stationary limit, the new
model for the TOMs reads as follows:

w3 = −A1
∂

∂z
w2 −A2

∂

∂z
wθ −A3

∂

∂z
θ2 (90)

w2θ = −A4
∂

∂z
w2 −A5

∂

∂z
wθ −A6

∂

∂z
θ2 (91)

wθ2 = −A7
∂

∂z
wθ −A8

∂

∂z
θ2, θ3 = −A9

∂

∂z
θ2 (92)

Equations (90), (91) and (92) exhibit the same structure of a linear combi-
nation of the z-derivatives of the SOMs first discussed in Canuto et al. [30, 34].
In (90), (91) and (92), the “diffusivities” Ai (with λ = gα) are given by:

A1 =
(
a1w2 + a2λτwθ

)
τ, A2 =

(
a3w2 + a4λτwθ

)
λτ2,

A3 =
(
a5w2 + a6λτwθ

)
λ2τ3, A4 = a7τwθ,

A5 =
(
a8w2 + a9λτwθ

)
τ, A6 =

(
a10w2 + a11λτwθ

)
λτ2,

A7 = a12τwθ, A8 =
(
a13w2 + a14λτwθ

)
τ, A9 = a15τwθ (93)

The coefficients ai in (93) are given in Appendix B of Cheng et al. [51]. In
Figs. 6 and 7 we exhibit the new TOMs and FOMs compared with LES data
and aircraft data.
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Fig. 6. Temperature variance dissipation rate εθ and normalized TOM vs. z/h
resulting from the numerical model of a convective PBL. The solid lines represent
the new model, the dot-dashed lines represent the LES data of Mironov et al. [115]
and the filled circles represent the aircraft data of Hartmann et al. [75]
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Fig. 7. Normalized FOMs vs. z/h according to the FOM model, as solid lines, using
T , SOMs and TOMs resulting from the numerical simulation of a convective PBL
as input, QNA FOMs as dotted lines. The filled circles represent the aircraft data
of Hartmann et al. [75]

Even though Eqs. (90), (91) and (92) are relatively simple and have been
successfully tested against LES data [51], more recently we have succeeded in
reducing them even further without deteriorating the comparison with LES
data. In fact, we have found the following simplified version:
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a)           (b)(

(c)

Fig. 8. (a) The third moment w3 normalized by w3
∗ vs. height normalized by the

PBL depth h. The filled circles represent the aircraft data of Hartmann et al. [75].
The dashed line shows the LES data of Mironov et al. [115]. The solid line represents
the result of the new, simple model, using the lower order moments from LES data
as input. (b) Same as in (a) but for w2θ normalized by w2

∗θ∗. (c) Same as in (a)
but for wθ2 normalized by w∗θ

2
∗

w3 = −0.06gατ2w2
∂wθ

∂z
, w2θ = −0.3τw2

∂wθ

∂z
, wθ2 = −τwθ

∂wθ

∂z
(94)

which are compared in Figs. 8a–c to the LES data of Mironov et al. [115]
and to the aircraft data of Hartmann et al. [75]. The data are reproduced
quite well. The first of (94) correctly yields a negative skewness below the
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cooling ocean surface (or equivalently below the cloud top in the PBL case,
see Stevens et al. [157]) where ∂B/∂z > 0 (B is the buoyancy), while it yields
a positive skewness near a surface heated from below where ∂B/∂z < 0. By
contrast, a down-gradient approximation which corresponds to retaining only
the first term in (90):

w3 ≈ −τw2
∂w2

∂z
(95)

yields the wrong sign of the skewness in both the above cases. To further
highlight the physical content of (94), we can re-write them as follows:

gαw2θ = 5τ−1
(
w2
)3/2

Sw, gαwθ2 =
50
3
τ−1J

(
w2
)1/2

Sw, (96)

so as to exhibit the skewness Sw = w3/(w3)3/2, as emphasized by previous
authors [74, 182]. The development of this new model has also benefitted from
the test of nonlocal models in stars [89, 90, 117].

12 Plumes and Turbulence

Consider Eq. (16) which in the more general form reads:

∂T

∂z
+ · · · =

∂

∂xj

(
Kij

∂T

∂xi

)
(97)

Here, Kij represents the heat diffusivity tensor which we split into its
symmetric and anti-symmetric parts:

Kij = 1/2 (Kij + Kji) + 1/2 (Kij −Kji) ≡ Ks
ij + Ka

ij (98)

and let us define the divergence-free velocity field:

u�
i = −

∂Ka
ij

∂xj
, ∂iu

�
i = 0 (99)

Equation (97) then becomes:

∂T

∂z
+ u�

i

∂T

∂xi
=

∂

∂xj

(
Ks

ij

∂T

∂xi

)
+ · · · (100)

This means that the symmetric part of Kij gives rise to the standard Dif-
fusion while the anti-symmetric part is instead an Advection. As Lappen and
Randall [95] have pointed out, in diffusive transport, information flows both
upward and downward; by contrast, in advective transport, the information is
either up or down depending on the time evolution, as we shall discuss below.

If one employs a local turbulence model, one only accounts for the rhs of
(100) and the model is purely diffusive. On the other hand, the plume model
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(PM) that has been widely used in the literature ([119], cited as MTT) is
purely advective, since in fact, the mean T equation reads:

∂T

∂t
+ w� ∂T

∂z
= 0 (101)

Clearly, neither a purely diffusive nor a purely advective model is satis-
factory since both advection and diffusion must be accounted for since they
represent different stages of the dynamical evolution of the system. Since the
formal derivation just presented underlines the fact that advection and diffu-
sion are not separate processes for they are both described by the same general
diffusivity tensor, one must conclude that provided one includes nonlocality,
turbulence models have all the ingredients to account for both diffusion and ad-
vection. The further task is to “plumenize” that is, to reformulate a nonlocal
RSM so as to exhibit the up–down drafts [40].

Plume models are attractive for they provide an intuitive visualization
of narrow descending plumes and wide ascending plumes exhibited by LES
studies of convection cooled from above. There are however difficulties, the
first of which is that the MTT is purely advective and its extension to include
diffusion is far from obvious.

The second problem is that MTT contains two equations representing
conservation of momentum and buoyancy. However, since there are three un-
knowns, the third being the fraction of space occupied by the plumes that
varies with z (or the plume’s radius), Taylor suggested a phenomenologi-
cal “entrainment equation” which contains an entrainment parameter α that
MTT is unable to determine. The parameter α has thus far been treated as
an adjustable coefficient but in reality it is a function of the large scale fea-
tures of the flow. Ellison and Turner [64] used laboratory data to determine
α = α(Ri), where Ri is the Richardson number, but this function provides
a poor fit to the Mediterranean outflow data [131, 176]. A more complete
formulation of α that includes nonlocal transport and which leads to a better
representation of the newest data has recently been proposed [39]. The third
problem is that MTT assumes that σ, the fractional area occupied by a plume,
is much smaller than unity:

σ << 1 σ = Σp (Σp + Σe)−1 (102)

where Σp(Σe) is the total cross-section of the plumes (environment) at a given
depth. However, since during their evolution, plumes entrain fluid from the en-
vironment, σ is bound to increase with depth to the point where (102) becomes
invalid. Specifically, entrainment causes the plume’s mass flux wpΣ

p ∝ σwp to
grow while stable stratification decreases wp, the net result being an increase
of σ to the point where (102) breaks down. In addition, a small σ model can-
not satisfy the zero mass flux relation (wu,d are the velocities of the up–down
drafts and z is considered upward):

σwd + (1 − σ)wu = 0 (103)
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which, in the small σ limit, implies that:

|wd| >> wu (104)

On the other hand, for the argument given above, when σ=1/2, Eq. (103)
implies that:

|wu| = |wd| (105)

which is not allowed under (102). Finally, the mass conservation (103) is in-
variant under the transformation:

wu → wd, σ → 1 − σ (106)

and so should be any PM. The MTT model is not invariant under (106) since
it is valid only in the plumes’ early development stages when the fraction of
space occupied by the plumes is still small (see Table 1 below).

Table 1. Development of plumes in Ocean Convection

Time Sw σ Up/Down Diff Adv

Init phase < 0 small |wd| 
 wu No Yes
Final phase ≈ 0 1/2 wu ≈ |wd| Yes No

In the fourth column we indicate the up/down interplay. In the early
stages, downdrafts dominate over updrafts, while in the final stages, updrafts
and downdrafts are equally important. The last two columns show that the
initial stages are governed by advection while the final stages are governed by
diffusion. Paluszkiewicz et al. [125], Alves [4] and Paluszkiewicz and Romea
[126], used the MTT to study Ocean Convection. See also The Labrador Sea
Deep Convection Experiment [165].

In summary, the MTT model has the advantage of simplicity but at
present: 1) it is restricted by (102), 2) it depends on the undetermined rate
of entrainment α and 3) it is only advective and leaves out diffusion.

13 New Plume Model

To correct the limitations of the MTT model, we proceed as follows.

1. We employ the RSM in which nonlocality is represented by the TOMs for
which we employ the new model discussed above.

2. We write the nonlocal TOMs in the “plume approximation” which as-
sumes a top hat profile that consists of two delta functions for the pdf of
each state variable, corresponding to ascending and descending plumes.
This implies [95] that such a profile has 100% probability of having one of
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just two possible values, the two allowed states being up-drafts and down-
drafts. This introduces a considerable simplification to the problem since
it reduces substantially the number of higher order moments that are re-
quired, it assures the realizability condition of the higher order moments
and requires fewer prognostic equations.

3. The new turbulence-based PM is such that all relations are invariant under
(106) and thus the model is valid throughout the entire plume’s develop-
ment

4. In the small σ limit, the new model reproduces the MTT model.

To “plumenize” the TOMs using the up–down draft notation, we begin
with the following relations [33]:

w2 = σ(1 − σ)(wu − wd)2 = βσw
2, βσ = σ(1 − σ)−1 (107)

J = σ(1 − σ)(wu − wd)(θu − θd) (108)

θ2 = σ(1 − σ)(θu − θd)2 = β−1
σ w−2J2 (109)

where w ≡ wd. Analogous relations hold for the salinity field. These relations
are invariant under (106). Then, the plumenized TOMs read:

w3 = −σ(1 − σ)(1 − 2σ)(wu − wd)3 = w2
3/2

Sw

w2θ = −σ(1 − σ)(1 − 2σ)(θu − θd)(wu − wd)2 = w2
1/2

SwJ

wθ2 = −σ(1 − σ)(1 − 2σ)(θu − θd)2(wu − wd) = θ2
1/2

SθJ (110)

where the skewness is taken to be:

Sθ,w ≡ (2σ − 1)[σ(1 − σ)]−1/2 (111)

With the additional relation:

w3 = −0.06 gατ2 w2
∂J

∂z
(112)

the dynamic Eqs. (76), (77), (78), (79) and (80), together with (110), (111)
and (112), constitute a new PM.

14 The Morton–Turner–Taylor Plume Model

The PM just derived is valid for an arbitrary σ and must reduce to the MTT
model in the small σ limit. In Turner ([170], with b2 = σl2 and for rising
plumes with z pointing upward, w > 0), the MTT model contains three
equations representing the plume’s kinetic energy 1/2w2, the fractional area
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σ occupied by the plume and the buoyancy B(cm2s−3). The MTT dynamic
equations are:

∂w2

∂z
=

2B
σw

− 4α
l

w2

σ1/2

∂σ

∂z
= − B

w3
+

4ασ1/2

l
(113)

∂B

∂z
= −σwN2

where α is the entrainment coefficient discussed earlier. Eq. (113) are not
invariant under (106) since they are only applicable in the regime (102). If
one substitutes the buoyancy equation into the mean temperature equation,
one obtains:

∂T

∂t
+ (w + wadv)

∂T

∂z
= 0, wadv = −σw (114)

As one can see, there is no diffusion which shows what we stated earlier
that the MTT is purely advective with an advection velocity wadv that is σ
times the plume’s velocity. An interesting variable is the plume’s “mass flux”
defined as:

M = σw (115)

Using (113), one obtains the equation:

M−1 ∂M

∂z
= E −D =

2α
l
σ−1/2 > 0 (116)

where E and D stand for the rates of entrainment and detrainment respec-
tively. Since the rhs of (116) is positive, MTT accounts only for entrainment
but not detrainment which is understandable since detrainment requires a dy-
namical environment which is excluded in the MTT model which assumes the
environment to be quiescent.

In the ocean case (w < 0) and σ << 1, we have from Eq. (107) and (111)
that:

βσ = σ, Sw = σ−1/2, w2 = σw2 (117)

and thus from Eq. (110) it follows that:

w3 = σw3, w2θ = wJ, wθ2 = σ−1/2J
(
θ2
)1/2

(118)

Using (117) and (118), the first of Eq. (94) becomes (C = 0.06):

∂Jh

∂z
= − w

Cgατ2
(119)
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Next, using (111) and (112), together with (118), we obtain:

w3 ∂σ

∂z
+

3σw
2

∂w2

∂z
=

2
3
(1 + 2β5)B − 4σw2

τ
(120)

w
∂J

∂z
+

J

2w
∂w2

∂z
= −σw2Tz + (1 − γ1)gασ−1w−2J2 − τ−1π−1

4 J (121)

Solving Eqs. (119), (120) and (121), and using (the coefficient C0 will be
discussed later):

τ = −C0σ
1/2w−1l (122)

we obtain:

∂w2

∂z
= 2(1 − γ1)w−1σ−1B + Γ1

Γ1 = 2C−1
0 π−1

4 w2σ−1/2l−1 − 2B−1w3σ
(
N2

h − C−1C−2
0 σ−2l−2w2

)
(123)

∂σ

∂z
= (3 γ1 + 4β5/3 − 7/3)Bw−3 + Γ2

Γ2 = (C0π4)
−1 (4π4 − 3)σ1/2l−1 + 3wB−1

(
σ2N2

h − C−1C−2
0 w2l−2

)
(124)

Using (81), we further have:

∂w2

∂z
= 1.3w−1σ−1B + Γ1,

Γ1 = 24C−1
0 w2σ−1/2l−1 − 2B−1w3σ(N2

h − 17C−2
0 σ−2l−2w2) (125)

∂σ

∂z
= −0.7Bw−3 + Γ2

Γ2 = −32C−1
0 σ1/2l−1 + 3wB−1(σ2N2

h − 17C−2
0 w2l−2) (126)

Since in our system z is positive upward, and the descending plume is
small near the surface but becomes progressively larger at depth, dσ/dz, the
second term in the rhs of (126) that represents entrainment, must be negative.
By the same token, the second term in (125) is positive since dw2/dz > 0. If
C0 = 6, Eqs. (125) and (126) compare well with Eq. (113) of the MTT model
(their Eq. 6.1.4) and Eqs. (10) and (11) of Paluszkiewicz and Romea [126].

15 Compressibility and Magnetic Fields

In the earth’s atmosphere, the height of the PBL is about 1 km while the
pressure scale height is about 8 km, yielding a ratio less than unity that ensures
the validity of an incompressible treatment. Quite different is the situation in
stars where the convective zone may be several pressure scale heights, just

This copy belongs to 'acha04'



Turbulence in Astrophysical and Geophysical Flows 141

the opposite of the PBL situation. This implies that compressibility effects
are important [14]. A RSM for compressible flows has been developed [23]
and the compressible counterparts of equations (76), (77), (78), (79) and (80)
are available. It would be quite instructive to consider the stationary and local
limits of these new equations so as to sort out the compressible equivalent of
the standard MLT.

As for the effect of magnetic fields on the heat transport and the possible
combination of magnetic fields and rotation, the study by Canuto and Hartke
[27] leads to analytic results. Depending on the angle between the vector H
and the z-axis, as well as on the magnetic Rayleigh number and the ratio of
magnetic energy (density) to kinetic energy (density), the heat flux exhibits
different dependence on the convective efficiency S defined in (23). In other
words, the heat flux can be either enhanced or reduced depending on those
parameters. In Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 of the
reference just cited one can find a set of heat flux vs. S results for different
cases.

16 Helioseismology

The advent of helioseismology and the wealth of information that it has
brought to the fore can and has been used to assess the validity of mix-
ing models. For an assessment, the reader can consult the review article by
Canuto and Christensen-Dalsgaard [32].

17 Reynolds Stress Model: Buoyancy and Shear

In the case of stable stratification (which is of interest to the astrophysical OV
regions, the ocean and the nocturnal PBL), one must consider three fields,
velocity, temperature and salinity (the latter becomes the mean molecular
weight field in the stellar case and the moisture field in the PBL case). The
RSM prescribes the rules to derive the dynamic equations for the second-order
moments as discussed in detail in several papers [20, 35–37]. Here, we shall
only quote the final results:

Reynolds stresses, Rij = uiuj , bij = Rij− 2
3δijK, D/Dt = ∂/∂t+ui∂i :

Dbij

Dt
= −8K

15
Σij − (1− p1)Ωij + (1− p2)Zij +

1
2
g(αTLij −αsMij)− 5 τ−1bij

(127)

Since the lhs has zero trace, all the terms in the rhs have the same feature.
The new terms are defined as follows:

Ωij = bikΣjk + bjkΣik − 2/3 δijbkmΣkm, Zij = bikVjk + bjkVik (128)

where the mean shear and vorticity were defined in Eq. (70). Furthermore,
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Lij = λiJ
h
j + λjJ

h
i − 2/3 δijλkJ

h
k , Mij = λiJ

s
j + λjJ

s
i − 2/3 δijλkJ

s
k (129)

Here, λi = −(gρ)−1∂ip, αT,s are the thermal expansion and haline con-
traction coefficients which require an equation of state to be computed. The
coefficients p1,2 are 0.832 and 0.545 respectively.

Heat flux, Jh
i = uiθ:

DJh
i

Dt
= −RijTj − Jh

j ui,j −
(
2αTΨ − αsσθ

)
∂ip− π−1

4 τ−1Jh
i (130)

Salinity flux, J s
i = uiσ:

DJs
i

Dt
= −RijSj − J s

jui,j −
(
αTσθ − 2αsΦ

)
∂ip− π−1

1 τ−1J s
i (131)

Temperature variance, Ψ = 1
2θ

2, Salinity variance, Φ = 1
2σ

2:

DΨ

Dt
= −Jh

i Ti − 2π−1
5 τ−1Ψ,

DΦ

Dt
= −J s

iSi − 2π−1
3 τ−1Φ (132)

T-S correlation, θσ:
θσ = −π2τ

(
Jh

i Si + J s
i Ti

)
(133)

where Ti = ∂iT , Si = ∂iS, T and S being the mean temperature and salinity
fields. To these equations we must add the equation for K given by Eqs. (39)
and (40) which were written for the mean molecular field but which have
the same formal structure for the salinity field. The dissipation time scales
here were written in terms of the dynamical time scale τ = 2K/ε and the
proportionality coefficients were denoted by πk. Without the help of an outside
model, the RSM per se is incapable of determining such coefficients and that
may be one of the reasons why in the past the RSM was not extended to
include the salinity field. Without the knowledge of such constants, the above
equations would be quite useless. In Canuto et al. [35–37] it was shown that
the outside model is provided by the RNG, the renormalization group, and we
refer the reader to the discussion in the original papers. The numerical values
are presented in Eq. (22d) of Canuto et al. [37]:

π1 = π4 =
(
27Ko3/5

)−1/2 (
1 + σ−1

t

)−1
, π3 = π5 = σt, π2 = 1/3 (134)

with a suggested valued of 0.72 for the turbulent Prandtl number σt.
Of course, it is quite cumbersome to hook up the above turbulence equa-

tions to a large scale code for stars, PBL and/or the ocean. Thus, we present
the solutions of Eqs. (127), (128), (129), (130), (131), (132) and (133) in the
stationary case. In that limit, Eqs. (127) (128), (129), (130), (131), (132) and
(133) become algebraic and can be solved analytically though admittedly with
the help of a symbolic algebra code. Quite interestingly, the results are simple
as the following expressions show:
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wθ = −Kh
∂T

∂z
, wσ = −Ks

∂S

∂z
, uw = −Km

∂u

∂z
, vw = −Km

∂v

∂z
(135)

where all the diffusivities have the same general form:

Kα =
2K2

ε
Sα, Sα = Sα(Ri, Rρ) (136)

where Ri was defined in (42) and the density ratio is given by:

Rρ =
αsSz

αTTz
(137)

which in the stellar case was introduced before (49). The dimensionless “struc-
ture functions” S’s are algebraic expressions given in Canuto et al. ([37], see
also Figs. 3, 4 and 5). Relation (136) points to a clear division of labour,
the K–ε equations must be solved to determine these two variables but, as
Eqs. (39) and (40) show, such equations require (135), (136) and (137). As an
example of the role played by the dissipation time scale represented by the
πk, we consider the ratio heat/salinity diffusivities which turns out to have a
rather simple form:

Kh

Ks
=

1 − π1π3xRρ + π1π2x(1 + Rρ)
1 + π1π3x− π1π2x(1 + Rρ)

(138)

where x = (τN)2(1 − Rρ)−1. This expression exhibits the correct symme-
try: when Rρ = −1, heat and salt diffusivity coincide, as they indeed must.
Furthermore, in the τ >> N−1 limit turbulence is not strong and Eq. (138)
becomes independent of x:

Kh

Ks
=

(π2 − π3)Rρ + π2

π3 − π2(1 + Rρ)
(139)

In the opposite limit of τ << N−1, we obtain instead:

Kh = Ks (140)

as expected since this corresponds to strong turbulence. For future use, we
shall rewrite Eq. (136) in the form:

Kα = Γα
ε

N2
, Γα =

1
2
(τN)2Sα (141)

where the Γα are called mixing efficiencies. Lacking a predictive mixing model,
in the past the practice has been to assume Γρ = 0.2. The mixing model
presented here shows that the Γα are not universal constants and in Canuto et
al. [37, 39] it is shown that they increase strongly near Rρ = 0.6, a prediction
consistent with the recent observations of much larger mixing at Barbados
(Rρ = 0.6) than at the NATRE location [98] where Rρ = 0.56. In addition,
the model predicts Γα = O(1), in agreement with LES data [177].
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18 Mixing in the Ocean: Mixed layer, Gravity
Waves and Tides

18.1 Mixed Layer

Broadly speaking, the vertical structure of the ocean can be characterized
by three distinct regimes: a mixed layer which is stirred by external forces,
primarily the external wind and in which mixing is very robust leading to a
very well-mixed regime. In this mixed layer (ML) heat and salt diffusivity are
the same but they differ from the momentum diffusivity. Since this regime is
stably stratified, N2 > 0, mixing can occur only as long as Ri < Ri(cr), as
discussed in Sect. 4. Below the ML, stable stratification is “stronger” than the
stirring due to the wind whose effect largely subsides.

Clearly, the depth of the ML varies with both latitude and seasons. In
tropical regions, where surface waters are warm, the temperature gradient
with respect to deep waters is large leading to a large Ri, small mixing and
shallow ML. By contrast, high latitude regions in winter have much cooler
surface waters whose temperature gradient with respect to deeper waters is
not so large, leading to a small Ri, strong mixing and a deeper ML. In general,
ML depths are hardly deeper than say a few hundred meters which is a minute
fraction of the ocean’s depth (3 km on average) but, due to its interaction with
the atmosphere, the ML plays a critical role in climate studies.

18.2 Internal Gravity Waves

Below the ML there is an extensive region where diffusivities are of the order
of 0.1 cm2 s−1 which is thousand times smaller than the one characterizing
the ML. This weakly mixed regime can exhibit DD processes.

It is generally believed that the mixing is due to the presence of inter-
nal gravity waves that are known to permeate the whole ocean. Although
a fundamental theory for non-linear wave interactions is still lacking, the
available information is considerable [70, 71, 88, 120, 128, 129, 169]. Kunze
and Sanford [88], using Sargasso Sea data, suggested an expression called the
Gregg–Heyney–Polzin parameterization whereby one has (cgs units):

εigw = 2.88AN2 (142)

which can therefore be used in (141). The dimensionless factor A (related
to the ratio of the shear variance to that computed from the Garrett and
Munk model [67]) varies at most by a factor of 2 over the entire depth of the
ocean. Recently, direct measurements of such diffusivities were made in the
open ocean [97, 98] and one has therefore a set of data to compare with the
predictions of a mixing model, like the one presented in the previous section.

In Figs. 9a–d we present the results of a 3D Global Ocean Model in which
the mixing model described above was used with ε ≡ εML + εigw. The North
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Heat diffusivity Salt diffusivity

Mass diffusivity Concentration diffusivity

Fig. 9. The diffusivities predicted by the mixing model vs. the NATRE data (see
text in Sect. 18)

Atlantic Tracer Release Experiment (NATRE) data are represented as dia-
monds with errors bars [149] while for the concentration diffusivity, Fig. 9d,
the triangles are from Ledwell et al. [97, 98].

18.3 Tides

There is a well-documented evidence from the Topex/Poseidon altimetry data
[60, 79] that tidal energy in the amount of approximately 3.5 terawatts (TW)
is dissipated in the ocean. While most of it gets dissipated in shallow waters, a
fraction amounting to 25–30%, that is, about 1 TW, is left for deep conversion
to internal tides. Thus far, the only tidal effect on global ocean properties that
has been investigated is the enhanced bottom mixing due to the break-up of
tides against a rough bottom topography resulting in a fraction q of the tidal
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energy to act as a source of additional mixing. This picture has been confirmed
by many studies [65, 99, 118, 122, 130, 168]. Since modelling studies have
shown long ago [19] that oceanic heat transport is quite sensitive to the value
of the vertical diffusivity which also affects quite significantly the uptake and
storage of the ocean’s heat [152], this additional mixing must be quantified
and its consequences on the oceanic global properties assessed. Two recent
pioneering studies [138, 148] have done so but they reach somewhat different
conclusions. In this case, (141) must be employed with:

ε ≡ εML + εigw + εtides (143)

To derive the dissipation due to tides, we begin by first considering the
internal tidal energy flux E(x, y) (in W m−2) which is derived in a simi-
lar manner as in Jayne and St. Laurent [79] from a parameterization of the
conversion of barotropic tidal energy into internal waves. A number of an-
alytical models have been used to predict this energy conversion rate. The
main theoretical approach used ideas first developed by Bell ([10, 11]; see also
[83, 101, 150]). In the parameterization of Jayne and St. Laurent [79], the
conversion of barotropic tidal kinetic energy is given by:

E(x, y) =
1
2
ρ0Nkh2u2

t (144)

where ρ0 is a reference density of seawater, (k, h) are the wave number and
amplitude that characterize the bathymetry and u is the barotropic tidal
velocity solution of the Laplace tidal equation. It should be emphasized that
(144) is a scale relation, and not a precise specification of the internal tide
energy flux. In the barotropic tidal model, the value of k was tuned to give
the best fit to the observed tides. Following Jayne and St. Laurent [79], the
tidal dissipation is then given by:

εtides = qE(x, y)ρ−1F (z) (145)

where the vertical structure function F (z) was assumed to have the form:

F (z) = ζ−1(1 − exp −H/ζ)exp − [(H + z)/ζ],
∫ 0

−H

F (z) dz = 1 (146)

The vertical scale ζ was taken to be 500 m. The quantity q represents the
amount of tidal energy that is used to produce mixing and clearly 0 ≤ q ≤ 1.
Thus far only the value q = 0.3 was employed but a wider range of values was
recently investigated [41].

18.4 Energy Considerations

As we said earlier, the tidal energy amounts to about 3.5 TW [121]. About
75% of it, about 2.6 TW is dissipated in shallow waters while the remaining
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Table 2. Partition of tidal energy (in TW) in the Ocean

Drag Internal tides Total

Shallow waters (< 1 km) 1.49 0.98 2.47
Deep ocean 0.01 1.01 1.02
Total 1.5 1.98 3.49

25%, that is, about 1 TW, goes into the deep ocean. In the work of [41], the
partition of energy turned out as shown in Table 2.

The global dissipation and conversion of tidal energy in the barotropic tide
model is 3.49 TW, of which about 1.50 TW is dissipated by drag, largely in
shallow seas, and 1.98 TW is scattered by conversion of the barotropic tide
into internal waves. Of the 1.98 TW of internal wave conversion energy, about
1.00 TW occurs in the ocean deeper than 1000 m, while 0.98 TW occurs in
areas < 1, 000 m. As one can see, the overall distribution of tidal energy used
is in good accord with the measured data.

18.5 Mechanical Power

The problem regarding the power required for driving mixing processes is an
old one which has recently been reviewed and restudied by St. Laurent and
Simmons [151]. By definition, we have:

Pm =
∫

KmΣ2 dV = N2 Kρ(1 + Γ−1
ρ ) (147)

where we have used production = dissipation which reads KmΣ2−KρN
2 = ε

and where the averages are defined as:

f =
(∫

fN2 dV
)
/

(∫
N2 dV

)
(148)

The results for Pm (in TW) are shown in Table 3.
In each case, the background contribution is always 0.31 TW. As dis-

cussed in Sect. 1 of St. Laurent and Simmons [151], using the water mass
budgets, various authors arrived at results which can be bracketed between
(0.5–2) TW. On the other hand, St. Laurent and Simmons [151] employed a

Table 3. Contribution of tides to power available for driving mixing in the Ocean

No tides 0.31 TW (background only)
q = 0.3 0.59 TW
q = 0.7 0.87 TW
q = 1.0 1.07 TW
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(a) (b)

Fig. 10. (a) World map of the tidal internal energy in W/m−2. (b) The temperature
vertical profile in the Arctic ocean with and without the effect of tides

different approach based on diffusivities measurements and thermodynamic
arguments and obtained (2.7 ± 0.7) TW. It must be stressed however that
such value depends on the mixing efficiency which was taken to be Γρ = 0.2
(for further details, see Sect. 4c of St. Laurent and Simmons, [151]). In the
work of Canuto et al. [41], there is no such a freedom since Γρ is computed
from within the model.

In Fig. 10a we show a map of the internal tidal energy given by Eq. (144)
while in Fig. 10b we show the T (z) profile in the Arctic ocean for several values
of the parameter q. As one can see, the bias (predicted temperature minus
the Lavitus data) is considerably reduced by the presence of tidal effects. The
same effect was also found for the salinity field.

19 Mixing in the Ocean: Deep Convection

Earth’s atmosphere interacts with the ocean in two ways. As already discussed
in the previous section, wind stresses cause strong mixing in the first ∼ 100 m
of the ocean (ML) but hardly affect water masses below the ML where lies the
largest portion of the ocean characterized by stable stratification and weak
mixing. To the effect of communicating with the deep ocean, e.g. in the process
of absorbing atmospheric CO2, stable stratification acts like a rigid lid that
insulates the strongly mixed ML from the weakly mixed deep ocean. If such a
configuration were to prevail, the deep ocean would be shielded from climatic
events; deep waters would be dynamically decoupled from surface phenomena
and the deep ocean currents would be considerably weaker than observed.
Differential solar heating between low and high latitudes would not result in
a poleward flow of warm waters and the Atlantic would look more like the
Pacific where there are no deep convective regions [178]. Earth’s climate would
be quite different from what is observed today.

This copy belongs to 'acha04'



Turbulence in Astrophysical and Geophysical Flows 149

Deep Convection is the process through which surface phenomena such as
buoyancy losses, brine rejection, etc., pierce the lid of strong stable stratifica-
tion that characterizes the thermocline. Ultimately, this leads to the forma-
tion of deep waters [53, 107, 110, 165]. Open deep ocean convection occurs
in a small number of locations, Labrador, Greenland, Weddell and Western
Mediterranean Seas, and yet it is one of the ocean’s major features since it
represents the initial stage of the global-scale ventilation loops of the world
ocean [142]. In fact, it is a dominant mechanism for the production of North
Atlantic Deep Water and of the Antarctic Bottom Water [178], both of which
play a major role in earth’s climate.

Loss of surface buoyancy and/or brine rejection lead to a top-heavy, unsta-
ble configuration which acts as precursor of turbulent motion that ultimately
leads to deep convection. The latter upwells warmer waters that can melt ice
and reduce the albedo resulting in a “negative feedback” that affects climate
[84]. Regrettably, however, deep convection is still poorly modelled in coarse
resolution ocean general circulation models (for details, see [38]). While labo-
ratory and numerical simulations [59, 107, 110, 142, 147] have brought to light
several key features of convective processes, the translation of this information
into a reliable model for coarse resolution OGCMs has not yet been achieved
but, given the complexity of the phenomenon, this is hardly surprising. Before
we test models for deep convection, it is important to discuss some of its key
features:

1. Deep convection is a highly turbulent process. This is exhibited by the
large vertical diffusivities Kv:

Kv ∼ lw ∼ (1 − 10) 105 cm2 s−1 (149)

where l ∼ (1 − 2) km and w ∼ (1 − 5) cm s−1, as discussed by Marshall
and Schott [107]. Equivalently, one may consider the large value of the
Reynolds number:

Re ∼ Kv/ν ∼ 107 (150)

where ν ∼10−2 cm2 s−1 is the kinematic viscosity of seawater. Thus, a
high-Re turbulence model is needed to describe deep convective processes.

2. Deep convection is affected by rotation. Consider the characteristic length
scale [68]:

l(rot) ∼ (Bsf
−3)1/2 ∼ (0.15 − 0.56) km (151)

where Bs is the surface buoyancy and f is the Coriolis parameter. The
numerical values in (151) correspond to the Greenland and Mediterranean
Seas ([107], Table 3.4.1). Contrary to the atmospheric case whose l(rot) is
much larger than the height ≈ 1 km of the planetary boundary layer, in
the ocean case the reverse is often true, namely l(rot) may be considerably
smaller than the ocean depth H that, for the two cases just cited, is 1.5
and 1.8 km. This yields small Rossby numbers Ro=l(rot)/H = 0.1 − 0.3,
an indication of the importance of rotation.
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A turbulence model must be able to incorporate rotational effects and
more specifically, it must be able to reproduce key features like the Golystin’s
scale (151). Rotation enters the turbulence equations not only through the
Coriolis term in the dynamic equations for the velocity but, more important,
it affects the very structure of the non-linear interactions that are at the heart
of turbulence. In the presence of rotation, velocity components with different
vectors are rotated by the Coriolis force around different axes that coincide
with the directions of the corresponding wave-vectors. Thus, the energy cas-
cade from large to small eddies is inhibited. An inertial range is still present
but only for wavenumbers larger than k(rot) where the latter is the inverse
of Eq. (151). For wavenumbers k < k(rot), the spectrum is no longer of the
Kolmogorov type, that is, one has two regimes:

l > l(rot) : E(k) ∼ (εΩ)1/2k−2, l < l(rot) : E(k) ∼ ε3/2k−5/3 (152)

Integrating the two spectra, one derives that the corresponding velocities
with and without rotation are given by:

w(rot) ∼ [l/l(rot)]1/2(Bsf
−1)1/2, w0 ∼ (BsH)1/3 (153)

where we have taken the dissipation rate ε equal to the surface buoyancy flux
Bs. Values of w(rot) and w0 for the Mediterranean, Labrador and Greenland

Fig. 11. Measured ML depths from Lavender et al. [96]
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Fig. 12. The Labrador ML depths resulting from the local vertical mixing model
discussed in Sects. 17 and 18 and in Canuto et al. [37]

Seas can be found in Table 3.4.1 of Marshall and Schott [107]. A turbulence
model capable of predicting the two regimes of the energy spectrum (152) has
recently been constructed and its implications tested against Direct Numerical
Simulations [31].

Although for the reasons already discussed in Sects. 12 and 13, one should
employ the new PM to study ocean’s Deep Convection, this has not yet been
done. The results that are available are nonetheless interesting since they
highlight the limitations of a local model without rotational effects. The model
results are taken from the work of Canuto et al. [38] and they are displayed in
Figs. 11 and 12. In the first figure we reproduce the measured ML depths while
in Fig. 12 we present the model results. Measurements show that the deepest
convection with depths deeper than 800 m, is confined to a rather limited
region inside the box. The model results, while still lacking key ingredients,
seem to capture at least some of the main features of the Deep Convection
processes. The limitations of the model are clearly visible in the regions outside
the box where ML depths up to 1.2 km are predicted which are however not
observed. It must be stressed however that other mixing models fare worse
than the one used in Fig. 12, as discussed in Canuto et al. [38]. The message
seems clear: to obtain better model results, one needs to employ a PM in
which non-locality is accounted for.

20 Dissipation: An Open Problem

Consider Eqs. (76) and (80) in the homogeneous and stationary case. The
first gives P = ε while the second gives c1 = c2, which contradicts the values
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of the two coefficients given before Eq. (80), namely c1 = 2.88 and c2 = 3.8.
Eqs. (76) and (80) are therefore inconsistent, at least in that limit. The reason
is that while Eq. (76) is derived exactly from the RSM method and contains no
adjustable parameters, the equation for the dissipation is highly parameterized
since an a priori derivation of (80) is still not available [136, 144]. This may
come as surprise since after all the definition of dissipation given by:

εij = 2ν∂iuk∂juk =
2
3
δijε (154)

entails only the velocity field and in principle one should be able to derive a
dynamic equation for ε. Davidov [56] was the first to derive such an equation
but the result was unmanageable. Over the years people tried to come up with
an equation that would mimic the equation for K and indeed (80) has a strong
similarity with (76). A thorough review of such an equation, the variants that
have been suggested over the years and an extensive list of references has
recently been given by Kantha [80]. The two coefficients c1,2 have been the
subject of much speculation [9, 80, 175]. For example: are they really constant
or are they functions? We don’t have an answer yet and we can only highlight
how c2 is generally arrived at. Consider the case of freely decaying turbulence
in which case Eqs. (76) and (80) become:

∂K

∂t
= −ε,

∂ε

∂t
= −c2 ε τ

−1 (155)

Using simple power laws of the type K ∼ t−n, ε ∼ t−m, one obtains
m = n + 1 and:

c2 = 2
(
1 + n−1

)
(156)

Since numerical simulations [47–49] indicate that n = 6/5–10/7, one ob-
tains the value of c2 cited above. Once that value is accepted, the coefficient
c1 is determined using other data which include a nonzero production term.
The procedure is hardly without a fault since there is no reason why the c2
determined in the freely decaying case should also hold in the case when pro-
duction is present. For example, one could suggest a generalization of (156)
of the type:

c2 = 2(1 + n−1)(1 + aP/ε)−1 (157)

that satisfies (156) when there is no production P = 0 while in the P = ε case
considered before, a proper choice of the parameter “a” could yield c1 = c2
and make the inconsistency disappear. This patch-up exercise is clearly open
to other suggestions, for example, the exponential −1 in the last term in (157)
could be changed to an additional adjustable parameter and so on. None of
these procedures is very satisfactory and thus Eq. (80) must be viewed as
the weakest point in any turbulence model. So much so that often (80) is not
even used and instead one employs a more heuristic approach on the grounds
that to fix the problems just mentioned one has to resort to empirical models
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anyway and thus (80) does not seem to offer great advantages. One very
common approach is to use a Kolmogorov’s type of formula (see Eq. (7)):

ε = K3/2Λ−1, Λ = c l(z), l(z) = κ z l0 (l0 + κ z)−1 (158)

with c = 5.87. These expressions were suggested by Blackadar [12] and Dear-
dorff [58] and are still widely used [7, 66]. Here z is the distance from the
nearest “wall” and κ is the von Karman constant whose value is around 0.4.
One can observe that for small z’s, l(z) = κ z which is the so-called “law of
the wall”, while for larger z’s, one obtains l(z) = l0 which, on the basis of
LES data, is taken to be 0.17H, where H is the extent of the mixing zone.
Furthermore, since in the case of stable stratification, turbulent kinetic en-
ergy transforms into eddy potential energy, one can define [58] a length scale
ls = cs(KN−2)1/2 with cs = 0.2 and rewrite the last relation (158) as:

1
l(z)

=
1
κ z

+
1
l0

+
1
ls

(159)

The universality of these relations is of course unknown. To this, we may
add the fact that the non-local term in (80) is a further source of uncertainty.
The closure suggested by Canuto ([20], Eq. (49):

wε = 3/2 τ−1FKE, FKE = wK (160)

was recently assessed quite successfully by Kupka et al. [91] using DNS data
for buoyant convection, Fig. 13. Other authors [17, 18, 175] have instead used
a closure of the down-gradient type:

Fig. 13. The function wε (in arbitrary units) from the 3D simulation of Kupka
and Muthsam [91]. As one can observe, the down-gradient closure (161) fails to
reproduce the data while (160) yields better results
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wε = −Km
∂ε

∂z
(161)

but, at least in the unstable buoyancy case, the results of Kupka et al. [91]
shown in Fig. 13 cast severe doubts about (161). What is the reason underlying
all these difficulties? A basic one is the following: in k-space (154) gives:

ε = 2ν
∫
k2E(k) dk (162)

The first consideration is that the largest contribution to the integral comes
from the high wave number region, which corresponds to the smallest eddies
which are very difficult to model since they contain little energy but a large
vorticity and a short lifetime. As an example, it is easy to verify the inap-
plicability of the HK spectrum: if (162) were to be integrated over all wave
numbers, Eq. (162) would diverge and the kinematic viscosity ν would not
disappear while it is known that ε does not depend on ν. This is true because
the non-linear interactions enter the dynamic equation under a divergence and
yield zero when one integrates over the whole volume leading to the physical
relation: energy input = energy output which alternatively means that the
non-linear interactions do not use any energy, they simply transfer it from
large to small eddies. Thus, what “gets” to the small eddies is the same en-
ergy that was put into the system which clearly has nothing to do with how
viscous the system is, being an arbitrary external input. So, how should one
read Eq. (162)? From left to right: given a fixed amount of energy input, which
is identical to ε, the right hand side tells us at which kd the dissipation occurs:
the smaller the viscosity, the larger kd has to be, that is, the smaller are the
eddies that operate the dissipation process. Thus, one can say that Eq. (162)
fixes the upper limit of integration. For example, if one uses the HK spectrum
only up to kd, integration of (162) gives:

kd =
( ε

ν3

)1/4

(163)

which is just Eq. (2). Seen from this viewpoint, it is perhaps not surprising that
a satisfactory dynamical equation for ε has thus far eluded us. To compute
(162), say from right to left, one needs a two-point closure that yields an
energy spectrum E(k) reliable in the high wavenumber regime which is hard
to obtain. This is not surprising since in the dissipation region the Reynolds
number is of order unity while all turbulence models have been constructed
for large Re. To justify Re = O(1), consider that in the dissipation region
the typical time scale is (ν/ε)1/2 and the velocity is v = (εν)1/4. Since Re =
v/(νkd), use of (162) leads to Re = O(1). We can only conclude that for the
time being we must live with these uncertainties about the dissipation ε.
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21 Conclusions

It is a matter of record that especially in astrophysical settings one witnesses
a surprising dichotomy: on the one hand, LES data are rich in content, in-
formation, details etc., while in stellar structure-evolution codes the mod-
els used to parameterize turbulent processes are still quite rudimentary, as
the MLT and/or Eqs. (56), (57) and (58) clearly demonstrate. In accretion
disks studies, which we have not discussed in this review, the situation is
rather similar for most studies still employ the Shakura–Sunyaev α-model
even though an effort was made to derive such a phenomenological parameter
from more basic principles [25]. Due to the large computational requirements
that any LES entails, there is little hope that astrophysical LES codes (e.g.
[8, 15, 16, 113, 132, 133, 156, 179]) will be hooked-up to a stellar structure and
evolution code any time soon. The only route out of the perennially unpredic-
tive nature of phenomenological models is the RSM. It solves the basic NSE
and scalar equations, it can accommodate diverse physical processes without
having to change the rules of the game every time a new process is included,
it gives very frequently algebraic results, it can be local and nonlocal, it can
be hooked-up to a general code, it has an extensive and successful pedigree
for it has been used for several decades to describe turbulent phenomena that
exhibit regimes quite similar to those occurring in stars, as we have discussed
in the case of cooling- from- above flows. While it is surprising that in stellar
structure and evolution studies the RSM are just beginning to be used, on
the other hand one can benefit from these advances to treat similar processes
in other settings.

Though fully aware of having asked more questions than the answers we
have offered, our goal was to show that much advantage can be had once one
switches from the plethora of ad hoc phenomenological models to the unified
treatment represented by the RSM which is the only available methodology
capable of including the great many physical processes that are present in
turbulent flows in stars.
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1 Introduction

Turbulence is ubiquitous in the earth’s atmosphere. Its spatial scales range
from many tens of kilometres to a few millimetres. A wide assortment of tur-
bulent eddies of different size and shape lies within this range. These include
breeze circulations, storms, clouds, plumes and rolls in the planetary bound-
ary layer (PBL), and eddies in urban street canyons and in plant canopies,
to mention a few. It is this large variety of turbulent motions that numerical
weather prediction (NWP) models, as well as other numerical models of the
atmosphere, have to deal with.

Atmospheric turbulence is a notoriously difficult and extensive subject.
Even a cursory examination of its most important aspects would require a
voluminous account that goes far beyond the scope of the present chapter. We
restrict our consideration to modelling turbulence in the lower troposphere
as it is practised nowadays in NWP and related applications, e.g. climate
modelling and air pollution dispersion studies. Turbulence modelling in this
context means the representation of the effect of turbulent motions, which
are not explicitly computed by a numerical model of the atmosphere, on the
explicitly computed fields. Other topics, such as measurements and numerical
simulations (large-eddy and direct numerical simulations) of turbulence in the
atmosphere, although very important, are not considered here. Readers are
referred to review articles and books [60, 61, 66–68, 99, 119, 131, 159, 183, 208],
where further references can be found.

Before proceeding any further, we recall a plain point that a numerical
model of the atmosphere solves the evolution equations in the form

∂ 〈f〉
∂t

+ 〈ui〉
∂ 〈f〉
∂xi

= −∂ 〈u′
if

′〉
∂xi

+ Ff , (1)
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where t is the time, xi are the space co-ordinates, and ui are the velocity com-
ponents. The Einstein summation convention for repeated indices is adopted.
A generic variable f refers to any quantity treated by an atmospheric model,
and Ff symbolizes the source of f due to various processes, such as radiation
and precipitation. The angle brackets denote the quantities that are explic-
itly computed (resolved) by a numerical model, and primes denote deviations
therefrom. The incompressibility is assumed which is a fairly accurate ap-
proximation for the lower troposphere. Equation (1) is obtained by applying
a spatial filter to the governing momentum and scalar equations (see the chap-
ter “Turbulent Combustion in Thermonuclear Supernovae” of this volume).
The quantity 〈u′

if
′〉 represents the flux of f due to subfilter scale motions.1

In what follows, the subfilter scale quantities will be referred to, perhaps
somewhat loosely, as the sub-grid scale (SGS) quantities, considering that
the latter term has been universally accepted. As the SGS motions are not
explicitly computed by a numerical model, the SGS flux must be modelled,
or parameterized, in terms of resolved quantities. The terms “model” and
“parameterization scheme” may be used interchangeably in this context. The
term “parameterization scheme” is more often used in the NWP community.

The SGS flux divergence term on the right-hand side (r.h.s.) of Eq. (1)
should in principle represent the effect of all SGS motions down to the small-
est scales where turbulence kinetic energy (TKE) eventually dissipates. It is,
however, customary for NWP models to split this term into contributions due
to various processes. The contributions due to “turbulence”, that is thought
to represent quasi-random small-scale motions, and due to “convection”, that
is thought to represent quasi-organized motions of larger scales, are usually
distinguished. That is,

〈u′
if

′〉 = 〈u′
if

′〉turb + 〈u′
if

′〉conv . (2)

The SGS momentum flux may also contain a contribution due to the oro-
graphic drag, i.e. the unresolved drag caused by the effects of sub-grid scale
orography, such as the absorption and reflection of orographically induced
gravity waves. The orographic drag parameterization issues will not be con-
sidered in what follows. Readers are referred to [23, 36, 129, 139, 185], where
further references can be found. Although the decomposition (2) is commonly
accepted, it is not as innocent as it might seem. Caution is required to ensure
that the sum of the above two contributions actually represents the total SGS
flux. Otherwise, serious problems may be encountered, for example, double-
counting of some energetically relevant modes of SGS motions, or their loss.

It is general practice in NWP and related applications to model the
two contributions on the r.h.s. of Eq. (2) in different ways. Turbulence

1 Strictly speaking, the Lilly [123] notation with no primes should be used to em-
phasize that the filter does not necessarily satisfy the Reynolds averaging assump-
tions. The subfilter scale flux is then given by 〈uif〉 − 〈ui〉 〈f〉. See [109, 183] for
further discussion.
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parameterization schemes are usually developed on the basis of the ensemble-
mean second-order turbulence closure approach. Convection parameterization
schemes are usually developed on the basis of the mass–flux approach. In
the subsequent text (Sects. 2 and 3), we will consider these parameterization
schemes in some detail. We attempt to show that the two approaches have
much in common, although differences remain and they may be important.

Convection in the atmosphere manifests itself in many different forms. Dry
convection is usually driven by the surface buoyancy flux and is confined to the
PBL. Regimes of moist convection are many and varied. As nicely stated by
Stevens [187] “moist convection is many, rather than one thing”. This author
presents a comprehensive account of many essential features of moist atmo-
spheric convection, including phenomenology and theoretical frameworks to
describe its major regimes, namely, stratocumulus, shallow non-precipitating
cumulus, and deep precipitating cumulus convection. Driven by a powerful
engine – the latent heat release due to water vapour condensation in rising
air parcels, moist convection can penetrate all the way up to the top of the
troposphere. Such deep penetrative convection is typically associated with
heavy precipitation. With their horizontal grid size of about 40 km or so, the
present-day global NWP models are unable to resolve deep convection. A pa-
rameterization is required to describe convective fluxes of scalar quantities and
of momentum, convection source terms due to condensation/evaporation, due
to release/consumption of latent heat and due to precipitation fall-out, as
well as a sophisticated interplay of convective, radiative and microphysical
processes. Improving deep convection parameterizations represents one of the
major challenges in NWP and related applications [12]. Details of this fasci-
nating phenomenon are discussed in [60, 61, 91, 179, 187]. The present-day
limited-area NWP models have a horizontal grid size of 10 to 5 km, and there
is a strong tendency to achieve an even higher resolution with a horizontal grid
size of order 1 km. With such a grid size, deep convection will likely be com-
puted explicitly. However, the PBL turbulence and shallow convection will still
remain at the sub-grid scale and will require an adequate parameterization
scheme. Some theoretical problems related to parameterizing SGS motions
in high-resolution atmospheric models are discussed in [210]. Notice that an
increased resolution will alleviate some parameterization issues but will make
other issues even more complicated. One example is the atmospheric radia-
tion. High-resolution NWP models will need to account for three-dimensional
effects of radiation transfer, inevitably making the radiation parameterization
schemes computationally very expensive.

Noteworthy are a number of issues that complicate the development of
physical parameterizations for NWP models, of turbulence–convection pa-
rameterizations in particular. Since NWP models are used operationally, their
quality is judged by the quality of the final product – the weather forecast.
The implementation of any innovation into an NWP model can only be jus-
tified if a new version of the NWP model that incorporates the innovation
beats an older version of the model in terms of the forecast quality. This is
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by no means guaranteed. The NWP models are very complex non-linear sys-
tems where a very sophisticated interplay of their various components takes
place. Apart from the physics and numerics, initialization and data assim-
ilation should also be borne in mind. Every component of an NWP model
has its own deficiencies. Working together, they produce errors that may am-
plify (a very unwanted situation), but may partially compensate each other
as well. Then, the incorporation of a new physical parameterization scheme
does not necessarily lead to an improved forecast, no matter how advanced
and physically sound that new scheme is as compared to an old scheme, i.e. to
the scheme currently used in the operational version of a given NWP model.
Putting it differently, it is not sufficient to prove that a new parameteriza-
tion scheme is superior to an old one in that it is more physically sound and
performs well as a stand-alone physical model, e.g. as judged by a compari-
son of results from idealized one-dimensional experiments with observational
and numerical data. It should also be ensured that a new parameterization
scheme works in harmony with the other components of a particular NWP
model.

One more aspect of great significance is that in order to be useful a
turbulence-convection parameterization for NWP should be computationally
efficient. Since the NWP products must be delivered to end users in due time,
it is simply not possible to apply parameterizations whose high computa-
tional cost may lead to a forecast delay. There are many physically sound
turbulence–convection models which proved to be very useful research tools.
However, there is no way to use them in operational NWP models for they
are computationally prohibitively expensive. On the other hand, a useful pa-
rameterization scheme should account for much of the essential physics of
atmospheric turbulence and convection. The key to the success in developing
turbulence–convection parameterization schemes for NWP and related appli-
cations is, therefore, to find the best possible compromise between physical
realism and computational economy.

Recent advances in observations and numerical simulations of atmospheric
flows along with new theoretical ideas have led to considerable progress in
representing turbulence and convection in NWP models. The progress, how-
ever, is somewhat slower than one might wish. Given the severe constraints
mentioned above, it seems likely that comparatively simple second-order clo-
sure schemes and mass–flux schemes will be further used in NWP models for
some years to come to parameterize turbulence and convection respectively.
The question then arises whether more regime-dependent sub-models (pa-
rameterization schemes) should be developed, or some unification of various
parameterization frameworks is possible (see discussions in [12, 145, 187]).
A definitive answer to this question does not seem to exist at present. Some
attempts have already been made to achieve a more unified description of sev-
eral types of fluctuating motions (see Sect. 4). It is also the author’s opinion
that a more unified description is desirable. There are several ways to do so,
however, and it is not a priory clear which way should be preferred.
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In the next section, we outline the ensemble-mean second-order modelling
framework and briefly discuss parameterization assumptions that should be
made in order to arrive at a reasonably simple turbulence closure. As we shall
see subsequently, only a small fraction of what is presented in Sects. 2.1 and
2.2 is actually used in applications. A rather extended discussion is necessary,
however, in order to understand how simplified parameterisation schemes are
obtained and what is lost on the way (Sect. 2.3). In particular, comprehending
the role of the third-order moments in maintaining the second-order moment
budgets is the key to understanding how non-local transport properties of
convective motions can be accounted for within the second-order modelling
framework. A consideration of parameterizations of the pressure redistribution
terms is required, among other things, to understand how the down-gradient
diffusion approximation for fluxes are derived from the second-moment bud-
get equations. Furthermore, a systematic consideration of the second-order
modelling framework demonstrates the limits of applicability of simplified
turbulence closures. The mass–flux parameterization schemes are outlined in
Sect. 3. In Sect. 3.3, we explore analogies between the ensemble–mean and the
mass–flux approaches. This exercise helps to elucidate the essential physics
behind various parameterization assumptions and suggests possible ways to-
wards their improvement. It also shows that the two approaches have much
in common and suggests how the mass–flux parameterization ideas can be
translated into the language of the ensemble–mean second-order closures and
vice versa. In Sect. 4, we discuss the steps that should be made towards an
improved description of turbulence and shallow non-precipitating convection
within a unified parameterization framework. Conclusions are presented in
Sect. 5. The discussion below inevitably reflects the author’s personal expe-
rience, and, to some (hopefully minor) extent, his preferences. The author
apologises for omissions that are unavoidable in any effort to address such an
extensive and difficult subject as atmospheric turbulence.

2 Turbulence Parameterisation Schemes

2.1 Governing Equations

The basis for the development of turbulence parameterization schemes is the
set of transport equations for the second-order turbulence moments (see e.g.
[152]). Those equations are derived using the Reynolds averaging and are
thought to describe the ensemble–mean statistical moments of fluctuating
fields. As already noted, a filter applied to the governing momentum and scalar
equations does not generally coincide with the Reynolds averaging. Hence, the
sub-grid scale (sub-filter scale) moments of fluctuating fields do not coincide
with the ensemble–mean moments. It is, however, assumed (often tacitly) that
the two sets of moments are not too different. The ensemble–mean second-
order closure approach is commonly taken to parameterize the SGS fluxes and
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variances as if these were truly ensemble–mean quantities. Caution should be
exercised since the validity of this assumption deteriorates as the resolution
of atmospheric models is refined.

For the sake of clarity, we first consider the case of the unsaturated atmo-
sphere, treating the atmospheric air as a two-component medium character-
ized by the two thermodynamic variables, viz., potential temperature θ and
specific humidity q. The real atmosphere is of course more complicated as it
also contains water in liquid and solid forms. Some issues related to modelling
turbulence in the cloudy atmosphere are briefly discussed in Sect. 2.5.

The set of governing equations, hereafter referred to as the ensemble–mean
equations, consists of the transport equations for the Reynolds stress

〈
u′

iu
′
j

〉
,

for the scalar fluxes 〈u′
iθ

′〉 and 〈u′
iq

′〉, for the scalar variances
〈
θ′2
〉

and
〈
q′2
〉
,

and for the temperature–humidity covariance 〈θ′q′〉. Using the Boussinesq
approximation and assuming that the Reynolds number is sufficiently high to
neglect the molecular diffusion terms in the second-moment budget equations
(a good approximation for the majority of atmospheric flows), they read
(

∂

∂t
+ 〈uk〉

∂

∂xk

)〈
u′

iu
′
j

〉
= −

(
〈u′

iu
′
k〉

∂ 〈uj〉
∂xk

+
〈
u′

ju
′
k

〉 ∂ 〈ui〉
∂xk

)

−
(
βi

〈
u′

jθ
′
v

〉
+ βj 〈u′

iθ
′
v〉
)

− 2
(
εilkΩl

〈
u′

ku
′
j

〉
+ εjlkΩl 〈u′

ku
′
i〉
)

−
(〈

u′
i

∂p′

∂xj

〉
+
〈
u′

j

∂p′

∂xi

〉
− 2

3
δij

∂

∂xk
〈u′

kp
′〉
)

− ∂

∂xk

(〈
u′

ku
′
iu

′
j

〉
+

2
3
δij 〈u′

kp
′〉
)
− εij , (3)

(
∂

∂t
+ 〈uk〉

∂

∂xk

)
〈u′

iθ
′〉 = − 〈u′

kθ
′〉 ∂ 〈ui〉

∂xk
− 〈u′

iu
′
k〉

∂ 〈θ〉
∂xk

− βi 〈θ′θ′v〉 − 2εijkΩj 〈u′
kθ

′〉 −
〈
θ′
∂p′

∂xi

〉

− ∂

∂xk
〈u′

ku
′
iθ

′〉 − εiθ, (4)

(
∂

∂t
+ 〈uk〉

∂

∂xk

)
〈u′

iq
′〉 = − 〈u′

kq
′〉 ∂ 〈ui〉

∂xk
− 〈u′

iu
′
k〉

∂ 〈q〉
∂xk

− βi 〈q′θ′v〉 − 2εijkΩj 〈u′
kq

′〉 −
〈
q′
∂p′

∂xi

〉

− ∂

∂xk
〈u′

ku
′
iq

′〉 − εiq, (5)

1
2

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
θ′2
〉

= −〈u′
kθ

′〉 ∂ 〈θ〉
∂xk

− 1
2

∂

∂xk

〈
u′

kθ
′2〉− εθ, (6)
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1
2

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
q′2
〉

= −〈u′
kq

′〉 ∂ 〈q〉
∂xk

− 1
2

∂

∂xk

〈
u′

kq
′2〉− εq, (7)

(
∂

∂t
+ 〈uk〉

∂

∂xk

)
〈θ′q′〉 = − 〈u′

kθ
′〉 ∂ 〈q〉

∂xk
− 〈u′

kq
′〉 ∂ 〈θ〉

∂xk

− ∂

∂xk
〈u′

kθ
′q′〉 − εθq. (8)

Here, θv = θ[1 + (Rv/Rd − 1)q] ≈ θ(1 + 0.608q) is the virtual potential tem-
perature, Rv and Rd are the gas constants for water vapour and for dry air,
respectively, βi = gi/θr is the buoyancy parameter, gi is the acceleration due
to gravity, θr is the reference value of temperature, Ωi is the angular velocity
of the earth’s rotation, and p is the kinematic pressure (deviation of pressure
from the hydrostatically balanced pressure divided by the reference density
ρr). The dissipation rates of various quantities are denoted by εij , εiθ, εiq, εθ,
εq, and εθq.

Taking the trace of Eq. (3) yields the budget equation for the TKE e =
1
2

〈
u′2

i

〉
,

1
2

(
∂

∂t
+ 〈uk〉

∂

∂xk

)〈
u′2

i

〉
= − 〈u′

iu
′
k〉

∂ 〈ui〉
∂xk

− βi 〈u′
iθ

′
v〉

− ∂

∂xk

(
1
2
〈
u′

ku
′2
i

〉
+ 〈u′

kp
′〉
)
− ε. (9)

where ε = 1
2 εii is the TKE dissipation rate.

It should be noted that the decomposition of the pressure gradient–velocity
correlation

(〈
u′

j∂p
′/∂xi

〉
+ 〈u′

i∂p
′/∂xj〉

)
that appears in the Reynolds stress

equation (3) is not unique. Along with a more traditional decomposition into
pressure–strain and pressure–diffusion, the decomposition into deviatoric and
isotropic parts has also been advocated (e.g. [184]). Keeping in mind that the
issue is not resolved, the former decomposition is adopted here.

2.2 Closure Assumptions

The second-order equations (3, 4, 5, 6, 7, 8 and 9) are not closed as they con-
tain a number of unknown quantities. There are three groups of unknowns,
namely, the pressure–velocity and pressure–scalar covariances, the third-order
velocity–velocity and velocity–scalar covariances, and the dissipation rates of
the second-order moments. Parameterizations (closure assumptions) are re-
quired for these quantities to express them in terms of the first-order and
the second-order moments involved and thereby close the system of gov-
erning equations. A large number of parameterizations have been developed
to date that vary greatly in terms of their complexity and field of applica-
tion. These parameterizations are the subject of an extremely voluminous
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literature. General scope reviews are given in e.g. [85, 120, 130, 160, 194].
Reviews of second-order closures for geophysical applications are given in
[16, 37, 61, 99, 142, 154, 169, 185, 202], among others. In this section, we
consider parameterizations typically utilized in the second-order modelling of
geophysical flows. We briefly discuss their advantages and limitations, empha-
sizing their utility for modelling turbulence in the lower troposphere.

One remark is in order. Plausible parameterizations used in the second-
order equations should satisfy a number of physical and mathematical require-
ments. Apart from the requirements of proper physical dimensions, tensor
invariance and symmetry, the so-called realizability requirements should also
be met. The concept of realizability [57, 130, 170] states that the Schwarz’ in-
equalities for all turbulence moments must always be satisfied. For the second-
order moments, this means that the velocity variances and the scalar variances
must always be non-negative and that the magnitude of the correlation coef-
ficient 〈a′b′〉 /

(〈
a′2
〉 〈

b′2
〉)1/2 between any two fluctuating quantities a and b

must not exceed 1. Intrinsically realisable models do not generate, by virtue of
their construction, physically impossible results. Notice that the realizability
constraints not only help to develop turbulence models that possess desired
physical and mathematical properties, but they are also useful in that they
provide additional relations between the model coefficients, thus reducing the
number of undetermined coefficients to be evaluated (tuned) on the basis of
empirical and/or numerical data.

Pressure Terms

Rotta [168] proposed a return-to-isotropy parameterization for the pressure–
velocity gradient covariance in turbulent shear flows. That parameterization
states that the rate of return of turbulence to isotropy is proportional to the
degree of anisotropy and inversely proportional to a certain time scale called
“return-to-isotropy” time scale. Then, the pressure redistribution term, the
fourth term on the r.h.s. of Eq. (3) that we denote by Πij , is given by
(〈

u′
i

∂p′

∂xj

〉
+
〈
u′

j

∂p′

∂xi

〉
− 2

3
δij

∂

∂xk
〈u′

kp
′〉
)

≡

Πij =

〈
u′

iu
′
j

〉
− 1

3δij 〈u′
ku

′
k〉

τu∗
, (10)

where τu∗ is the return-to-isotropy time scale. The return-to-isotropy formu-
lation was extended to the pressure gradient–scalar covariance, assuming that
the rate of destruction of turbulent scalar flux is related to the flux in ques-
tion through a certain relaxation time scale. By way of example, consider the
formulation for the potential temperature. Other scalars can be treated in
much the same way. Denoting the pressure gradient–temperature covariance,
the fifth term on the r.h.s. of Eq. (4), by Πθi, we get
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〈
θ′
∂p′

∂xi

〉
≡ Πθi =

〈u′
iθ

′〉
τθ∗

, (11)

where τθ∗ is the relaxation “return-to-isotropy” time scale for potential tem-
perature.

Applying return-to-isotropy parameterizations to the entire pressure terms,
one lumps all the uncertainties on the relaxation time scales. A more common
approach nowadays is to decompose Πij and Πθi into the contributions due to
the non-linear turbulence interactions, mean shear, buoyancy, and the Corio-
lis effects, and to model these contributions separately. Then, the return-to-
isotropy parameterisation is applied to the non-linear turbulence contributions
only. The approximations for the pressure terms Πij and Πθi can be written
in the form (see e.g. [144, 202, 213]):

Πij = Cu
t

aij

τu
e

+
[
Cu

s1Sij + Cu
s2

(
aikSkj + ajkSki −

2
3
δijaklSkl

)

+Cu
s3 (aikWkj + ajkWki)

]
e

+ Cu
b

(
βi

〈
u′

jθ
′
v

〉
+ βj 〈u′

iθ
′
v〉 −

2
3
δijβk 〈u′

kθ
′
v〉
)

+ 2Cu
c

(
εilkΩl

〈
u′

ku
′
j

〉
+ εjlkΩl 〈u′

ku
′
i〉
)

+ NLT, (12)

Πθi = Cθ
t

〈u′
iθ

′〉
τθ

+
(
Cθ

s1Sij + Cθ
s2Wij

) 〈
u′

jθ
′〉

+ Cθ
b βi 〈θ′θ′v〉 + 2Cθ

c εijkΩj 〈u′
kθ

′〉 + NLT. (13)

Here, aij = 2
〈
u′

iu
′
j

〉
/〈u′

ku
′
k〉 − 2

3δij is the departure-from-isotropy tensor,
Sij = 1

2 (∂ 〈ui〉/∂xj + ∂ 〈uj〉/∂xi) and Wij = 1
2 (∂ 〈ui〉/∂xj − ∂ 〈uj〉/∂xi) are

the symmetric and the antisymmetric parts of the mean–velocity gradient
tensor, respectively, and Cu

t , Cu
s1, C

u
s2, C

u
s3, C

u
b , Cu

c , Cθ
t , Cθ

s1, C
θ
s2, C

θ
b and

Cθ
c are dimensionless coefficients. The return-to-isotropy time scales τu and

τθ should not be confused with τu∗ and τθ∗ in Eqs. (10) and (11).
Jones and Musogne [94] (see also [50]) added an additional term to the

parameterization of Πθi that is proportional to the gradient of mean scalar
concentration. It reads Cθ

meaij∂ 〈θ〉/∂xj , where Cθ
m is a dimensionless coeffi-

cient. The Jones and Musogne approach was further developed by Craft et al.
[46] who incorporated the mean–gradient term into the expression for the
non-linear turbulence (return-to-isotropy) contribution to Πθi.

The mean–shear, buoyancy and Coriolis terms on the r.h.s. of Eqs. (12)
and (13) represent linear contributions to the so-called rapid parts of Πij and
Πθi (the return-to-isotropy contributions to Πij and Πθi are referred to as
slow parts of the pressure terms). Notice that these linear rapid terms have
the same form as the mean–shear, buoyancy and Coriolis terms in Eq. (3)
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for the Reynolds stress and Eq. (4) for the temperature flux. Therefore, the
effect of linear rapid terms, sometimes referred to as the implicit mean–shear,
buoyancy and Coriolis terms, is simply to partially offset the respective explicit
terms already present in Eqs. (3) and (4).

Generally speaking, the pressure–velocity and the pressure–scalar covari-
ances depend non-linearly on the departure-from-isotropy tensor and on the
other tensors involved, e.g. on the rotation tensor εikjΩk. The non-linear parts
of Πij and Πθi are symbolized by NLT on the r.h.s. of Eqs. (12) and (13).
Numerous elaborate non-linear formulations of the pressure terms have been
proposed (e.g. [46, 85, 130, 144, 166, 213]). Particular emphasis is placed on
the realizability of parameterized pressure terms, following different ways of
imposing realizability constraints. The non-linear models perform better than
the simplified linear models, particularly in flows with large departures from
isotropy. However, the non-linear models are inevitably complex. They are
often inconvenient to use and are computationally expensive. It is therefore
common practice in geophysical applications to put up with the shortcom-
ings of linear models and apply Eqs. (12) and (13) without NLTs. In doing
so the TKE dissipation time scale τε = e/ε is typically used instead of the
return-to-isotropy time scales τu and τθ, assuming that all these time scales
are proportional to each other. The dimensionless coefficients Cu

t through Cθ
c

in Eqs. (12) and (13) are adjusted to provide a good fit of the model results
to empirical data, i.e. these coefficients are treated as tuning model param-
eters. Some estimates of these dimensionless coefficients used in geophysical
turbulence modelling are given in [202]. Several important points should be
discussed in relation to the parameterization of the pressure terms.

First and foremost we recall how the parameterizations for the pressure
terms are derived. Taking the divergence of the transport equation for the
fluctuating velocity, a Poisson equation for the fluctuating pressure is ob-
tained. Parameterizations for various contributions to Πij and Πθi are then
developed on the basis of the Green’s function solution to the Poisson equation
[45]. That solution depends on the entire fluid domain considered. In practice,
however, the two-point correlations are assumed to be different from zero only
in the vicinity of the point where the pressure terms are evaluated. Then, the
pressure–velocity and pressure–scalar covariances are modelled as if they were
local (dependent on the flow variables at the same point), although they may
actually be non-local (dependent on the flow variables in the entire domain).
Therefore, formulations of the type given by Eqs. (12) and (13) have inherent
limitations. These formulations may not perform well in situation where tur-
bulence is essentially non-local, as is, for example, the case for atmospheric
convection. Notice that both linear and non-linear one-point formulations for
Πij and Πθi suffer from this shortcoming.

Although linear models of Πij and Πθi are attractive from the standpoint
of practical applications, they may entirely fail in some situations of interest.
An illustrative example is turbulent convection driven by the surface buoyancy
flux and affected by rotation [144, 147]. In the seemingly simple case where the
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rotation axis is aligned with the vector of gravity, the linear model predicts
a Coriolis contribution to Πθi that is identically zero, although the Coriolis
contribution becomes one of the dominant parts of Πθi as the rotation rate
increases. As shown in [144], a non-linear formulation is required which is at
least quadratic in the rotation tensor εikjΩk. Fortunately, the effect of rotation
on turbulence is of little importance in most atmospheric flows.2 Similar prob-
lems may, however, be encountered when the effects of buoyancy and shear
are considered. Caution must be exercised when simplified parameterizations
are applied.

To conclude this section, we remark that modelling the pressure transport
term 2

3δij∂ 〈u′
kp

′〉 /∂xk in Eq. (3) represents a separate problem. Lumley [130]
and Shih [173] discussed this problem in some detail. The pressure transport
term is usually smaller than the third-order velocity correlation term, although
this is not always the case. It is standard practice in applied turbulence mod-
elling to neglect the pressure transport term entirely, or to incorporate it into
a parameterization of the third-order velocity correlation.

Third-Order Moments

The second group of terms that require closure assumptions includes turbu-
lence moments of the third order. These terms enter Eqs. (3, 4, 5, 6, 7, 8 and
9) in the divergence form. They describe the transport of the second-order
moments by the fluctuating velocity. Numerous formulations have been pro-
posed for the third-order transport terms (e.g. [43, 49, 83, 86, 117]), ranging
from the simplest down-gradient approximations to very complex formulations
based on a sophisticated treatment of transport equations for the third-order
turbulence moments. Simple down-gradient approximations have been most
popular in geophysical applications. They read

〈
u′

iu
′
ju

′
k

〉
= −Kuu

(
∂
〈
u′

iu
′
j

〉

∂xk
+

∂ 〈u′
iu

′
k〉

∂xj
+

∂
〈
u′

ju
′
k

〉

∂xi

)
, (14)

〈
u′

iu
′
jθ

′〉 = −Kuθ

(
∂ 〈u′

iθ
′〉

∂xj
+

∂
〈
u′

jθ
′〉

∂xi

)
, (15)

〈
u′

iθ
′2〉 = −Kθθ

∂
〈
θ′2
〉

∂xi
, (16)

2 This holds for deep convective updraughts, boundary-layer plumes and rolls, and
eddy motions on a smaller scale. Eddy motions of larger spatial scale, such as
synoptic weather systems (e.g. cyclones and fronts) and regional circulations, do
feel the earth’s rotation. These motions are, however, resolved by the present-day
NWP models so that there is no need for a parameterization.
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where Kuu, Kuθ and Kθθ are the eddy diffusion coefficients. Other scalar
quantities are treated in the same way as the potential temperature. The
down-gradient approximation for the TKE transport term reads

〈
u′

iu
′2
k

〉
= −Ke

∂
〈
u′2

k

〉

∂xi
, (17)

where Ke is the eddy diffusion coefficient with respect to the TKE.
The down-gradient formulations (14, 15, 16 and 17) are attractive for their

simplicity. It has long since been recognized, however, that their performance
in complex flows leaves very much to be desired and a more accurate treatment
of the third-order moments is required. This is particularly true for convective
flows (e.g. [147, 150]), but may also be the case for stably stratified flows (e.g.
[46]). In an attempt to develop a physically plausible parameterization, the
focus has been on buoyant convection where the third-order moments are
largely responsible for non-local transport properties of turbulent motions.

A straightforward way is to derive expressions for the third-order moments
from their budget equations. These equations require closure assumptions in
much the same way as the second-moment equations. In particular, the fourth-
order moments that describe the transport of the third-order quantities by the
fluctuating velocity should be parameterized. The so-called Millionshchikov
hypothesis [143] has been used for this purpose over several decades. It states
that the fourth-order moments can be considered as quasi-Gaussian, even
though the third-order moments are nonzero. That is, the following relation
holds for any four fluctuating quantities a, b, c and d:

〈a′b′c′d′〉 = 〈a′b′〉 〈c′d′〉 + 〈a′c′〉 〈b′d′〉 + 〈a′d′〉 〈b′c′〉 . (18)

Using Eq. (18) for the fourth-order moments, the Rotta-type formulations
for the pressure terms, and the relaxation-type formulations for the dissipa-
tion terms, then neglecting the advection and the time-rate-of-change of the
third-order moments, a closed set of algebraic expressions for the third-order
moments is derived. Canuto et al. [43] developed such expressions for the
horizontally homogeneous convective boundary layer (CBL). The third-order
moments appear to be linear combinations of the derivatives (in the x3 verti-
cal direction only) of all second-order moments involved multiplied by certain
combinations of governing parameters with dimensions of eddy diffusivity.
Some of those combinations explicitly depend on the buoyancy parameter.
Canuto et al. [42] employed a modified quasi-normal approximation that ba-
sically amounts to multiplying the r.h.s. of Eq. (18) by a correction function
of the dissipation time scale and of the buoyancy time scale (a reciprocal
of the buoyancy frequency). These authors proposed modified (and slightly
simplified) expressions for the third-order moments that show a better agree-
ment with large-eddy simulation (LES) data from a shear-free CBL than the
expressions given in [43].
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An attractive way of looking at the problem of non-local convective trans-
port is based on the observation that convective turbulence is skewed. For ex-
ample, in the CBL driven by the surface buoyancy flux, the vertical transport
in mid-CBL is dominated by quasi-organized motions, convective updraughts,
whose size is of the order of the CBL depth. The updraughts are more lo-
calized (occupy a smaller area) than the compensating downward motions,
downdraughts. A quantitative measure of this localization is the vertical-
velocity skewness Sw =

〈
u′3

3

〉
/
〈
u′2

3

〉3/2. Likewise the potential–temperature

skewness Sθ =
〈
θ′3
〉
/
〈
θ′2
〉3/2 is a quantitative measure of the localization of

potential–temperature anomalies (with respect to a horizontal mean). Guided
by this view of convective circulation and of the bottom–up top–down trans-
port asymmetry [209], Abdella and McFarlane [1], Canuto and Dubovikov [41]
and Zilitinkevich et al. [225] proposed the following parameterization for the
flux of potential–temperature flux:

〈
u′2

3 θ
′〉 = Sw

〈
u′2

3

〉1/2 〈u′
3θ

′〉 . (19)

This expression has an advective rather than a down-gradient diffusive form,
indicating that the temperature flux is transported by the CBL-scale quasi-
organized eddies rather than diffused by small-scale random turbulence.
The quantity Sw

〈
u′2

3

〉1/2 =
〈
u′3

3

〉
/
〈
u′2

3

〉
was termed “large-eddy skewed-

turbulence advection velocity” in [225]. Zilitinkevich et al. [225] (see also [83])
added a conventional down-gradient diffusion term −Kwθ∂ 〈u′

3θ
′〉/∂x3, Kwθ

being the turbulent diffusivity with respect to 〈u′
3θ

′〉, to the r.h.s. of Eq. (19)
in order to arrive at an interpolation formula that should work in both well-
mixed regions of the flow, where advective transport by the CBL-scale eddies
dominates, and in stratified regions, where turbulent transport is primarily of
diffusive character.

A skewness-dependent parameterization for the flux of potential–temper-
ature variance was formulated by Mironov et al. [146], Abdella and McFarlane
[2] and Abdella and Petersen [3]. It reads

〈
u′

3θ
′2〉 = Sθ

〈
θ′2
〉1/2 〈u′

3θ
′〉 . (20)

An interpolation formula for
〈
u′

3θ
′2〉 that incorporates the down-gradient term

−Kθθ∂
〈
θ′2
〉
/∂x3, Kθθ being the turbulent diffusivity with respect to

〈
θ′2
〉
,

was presented in [83].
Equations (19) and (20) are consistent with the top-hat representation

of fluctuating quantities. The top-hat representation is central to the mass–
flux approach widely used to parameterize convection in numerical models
of the atmosphere. The simplest top-hat mass–flux model can be formulated
in terms of a probability distribution function (PDF) which consists of only
two Dirac delta functions, i.e. the probabilities of motions to be either up-
draughts or downdraughts are Pu and Pd, respectively, and Pu + Pd = 1.
A comprehensive account of the two-delta-function mass–flux framework is
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given by Randall et al. [162], Lappen and Randall [110, 111] and Gryanik
and Hartmann [83]. In order to emphasize a different localization (different
fractional area coverage of positive/negative anomalies with respect to a hor-
izontal mean) of the vertical velocity and of the scalar quantities, as mani-
fested by a difference between Sw and Sθ (see Fig. 1 in [146]), Gryanik and
Hartmann [83] refer to their approach as to the two-scale mass–flux approach.
Notice that different PDFs can be used to develop parameterizations of statis-
tical moments of turbulence. For example, Larson and Golaz [116] developed
parameterizations of various third-order and fourth-order moments, using a
combination of two trivariate Gaussian functions. These authors considered
moist CBL and presented their results in terms of vertical velocity, liquid
water potential temperature and total water specific humidity. The formula-
tions based on the two-Gaussian-function PDF revealed a somewhat improved
fit to data for some moments as compared to the formulations based on the
two-delta-function PDF.

Equations (19) and (20) require that Sw and Sθ be specified. If the budget
equations for the third-order moments are used for this purpose as discussed
above, formulations for the fourth-order moments are required. Taking the
two-scale mass–flux approach, Gryanik and Hartmann [83] and Gryanik et al.
[84] proposed (see also [2])

〈
u′4

3

〉
= 3

(
1 +

1
3
S2

w

)〈
u′2

3

〉2
,

〈
θ′4
〉

= 3
(

1 +
1
3
S2

θ

)〈
θ′2
〉2

, (21)

〈
u′3

3 θ
′〉 = 3

(
1 +

1
3
S2

w

)〈
u′2

3

〉
〈u′

3θ
′〉 , (22)

〈
u′

3θ
′3〉 = 3

(
1 +

1
3
S2

θ

)〈
θ′2
〉
〈u′

3θ
′〉 , (23)

〈
u′2

3 θ
′2〉 =

〈
u′2

3

〉 〈
θ′2
〉

+ 2 〈u′
3θ

′〉2 + SwSθ 〈u′
3θ

′〉
〈
u′2

3

〉1/2 〈
θ′2
〉1/2

. (24)

Similar expressions for the fourth-order moments that incorporate horizontal
velocity components u1 and u2 are presented in [84]. Both Eqs. (19) and (20)
for the third-order moments and Eqs. (21, 22, 23 and 24) for the fourth-order
moments were favourably tested against data from LES and from aircraft
measurements in the atmospheric CBL [83, 84], from numerical simulation of
open-ocean deep convection [128], and from numerical simulation of solar and
stellar convection [108].

Equations (21, 22, 23 and 24) amount to a generalization of the Million-
shchikov hypothesis. Indeed, in the case of isotropic turbulence, Sw and Sθ

vanish and Eqs. (21, 22, 23 and 24) reduce to the form given by Eq. (18).
In the other limiting case of very skewed turbulence, the terms with Sw and
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Sθ dominate over the other terms and Eqs. (21, 22, 23 and 24) take on the
form suggested by the top-hat mass–flux approach. Then, Eqs. (21, 22, 23 and
24) represent the simplest linear interpolation between the two limiting cases,
where dimensionless coefficients on the r.h.s. (3, 1 and 1/3) are chosen in such
a way that these limiting cases are satisfied exactly. It should be emphasized
that Eqs. (19) and (20) for the third-order moments and Eqs. (21, 22, 23
and 24) for the fourth-order moments taken in the limit of large skewness
are in essence the top-hat mass–flux parameterizations expressed in terms of
the ensemble–mean quantities. Analogies between the ensemble–mean and the
mass–flux modelling frameworks are discussed below in greater depth.

Noteworthy also is that the expressions (21, 22, 23 and 24) for the fourth-
order moments satisfy the realizability constraints [5–7, 84] regardless of the
magnitude of skewness. This is not the case for Eq. (18) that violates realiz-
ability if the magnitude of Sw or of Sθ exceeds 21/2 [84].

Parameterizations (19, 20, 21, 22, 23 and 24) are developed for the
temperature-stratified horizontally homogeneous CBL, where potential tem-
perature is the only thermodynamic variable and all quantities of interest
depend on the x3 vertical co-ordinate only. Their extension to the three-
dimensional case is by no means trivial but seems to be manageable
(D. Mironov, A note on the parameterization of the third-order transport
in skewed convective boundary-layer turbulence, unpublished manuscript;
V. Gryanik, personal communication). Such an extension is highly desirable
and should be developed. The same is true for the extension to the moist at-
mosphere, where, apart from potential temperature, water in its three phases
should be considered.

Dissipation Rates

Finally, the rates of dissipation of the second-order turbulence moments should
be parameterized. It is common practice to assume, following Kolmogorov
[104], local isotropy at small scales, giving εiθ = 0, εiq = 0, and εij = 2

3δijε.
In order to determine the TKE dissipation rate, a prognostic equation for
ε has been used in engineering and geophysics over several decades (e.g.
[10, 16, 37, 46, 49, 58, 117, 167, 201]). The dissipation rates of the scalar
quantities, εθ, εq and εθq, are either related to e and ε through εθ ∝ e−1ε

〈
θ′2
〉

(similarly for εq and εθq), or computed from their own prognostic equations
(e.g. [156]). Once the dissipation rates are determined, the various time scales,
length scales and eddy diffusion coefficients are computed diagnostically
through these dissipation rates and the corresponding variances. For example,
the quantities with respect to the TKE are given by l ∝ ε−1e3/2, τ ∝ ε−1e and
K ∝ ε−1e2. In this way the system of the second-order equations is closed.

Apart from the ε equation, prognostic equations have been formulated for
other quantities that determine the turbulence length/time scale. Prognostic
equations for the product e l of the TKE and the turbulence length scale [142],
for the reciprocal of turbulence time scale e−1ε [203, 205], and for the eddy
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diffusivity ε−1e2 [212] are examples. These closure ideas were generalized by
Umlauf and Burchard [201] who developed a generic equation for the quan-
tity emln that incorporates the equations mentioned above as particular cases.
These authors proposed a rational way to calibrate their generalised model
in the so-called two-equation second-order modelling framework, where only
the TKE equation and the equation for emln are carried as prognostic equa-
tions whereas the other second-order equations are reduced to the diagnostic
algebraic expressions. The exponents m and n along with the other model
parameters are evaluated by demanding consistency with a number of well-
documented reference cases, such as the logarithmic boundary layer and the
decay of homogeneous turbulence.

The prognostic equations for the dissipation rates of TKE and of scalar
variances are very complex. They contain a number of terms whose physical
nature is not satisfactorily understood. In fact, all terms in the dissipation-
rate equations that describe production, destruction and turbulent transport
of the dissipation rates should be parameterized, and the validity of those pa-
rameterizations is uncertain. It has often been questioned whether prognostic
equations for the dissipation rates are really necessary, or diagnostic expres-
sions may be sufficient, at least in case of a relatively simple flow geometry.
The latter viewpoint is often held in geophysical applications. A simple and
an economical way to determine the dissipation rates of the TKE and of the
scalar variances is to compute them from the following expressions:

ε = Cεe
e3/2

l
, εθ = Cεθ

〈
θ′2
〉
e1/2

l
, (25)

using one or the other formulation for the turbulence length scale l. Here,
Cεe and Cεθ are dimensionless coefficients. The dissipation rates εq and εθq of
the humidity variance and of the potential temperature–humidity covariance,
respectively, are computed similarly to εθ. The above expressions for the dis-
sipation rates can be recast in terms of the turbulence time scale τ = e−1/2l.

There have been numerous proposals for expressions to compute the length
scale l. The simplest of them seems to have been Blackadar’s formula [28],
l−1 = l−1

sfc + l−1
∞ , that interpolates between the two limits, namely, l = lsfc =

κx3, κ being the von Kármán constant, as x3 → 0, and l = l∞ as x3 → ∞. This
yields the logarithmic profiles close to the underlying surface and prevents the
turbulence length scale from growing without bound well above the surface.
The free-flow length scale l∞ is either set proportional to the PBL depth, or
simply set to a constant value (typically from one hundred to a few hundred
metres in the atmospheric models). One more formulation is due to Mellor and
Yamada [141] who proposed l∞ = C∞

(∫∞
0

x3e
1/2dx3

)−1 ∫∞
0

e1/2dx3, where
C∞ is a dimensionless coefficient of order 10−1. Other limitations on l have
also been used. The length scale is taken to be limited by the shear length
scale ls = Cls (SijSij)

−1/2
e1/2 (e.g. [44] and references therein), and, in case

of stable density stratification, by the buoyancy length scale lb = ClbN
−1e1/2,
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where N is the buoyancy frequency (e.g. [34, 215, 226]). In rotating flows, the
length scale is taken to be limited by lr = Clr (ΩiΩi)

−1/2
e1/2 (e.g. [87]). This

limitation is of little importance in the atmosphere. It is important in many
geophysical, astrophysical and technical applications. A prominent geophysi-
cal example is open-ocean deep convection [137]. Dimensionless constants Cls,
Clb and Clr are evaluated on the basis of empirical and numerical data. Read-
ers are referred to the chapter “Turbulence in Astrophysical and Geophysical
Flows” of this volume for further discussion of the dissipation rates and of the
turbulence length scale.

2.3 Simplifications

The second-order equations closed as discussed above would probably do a
fairly nice job of describing most salient features of turbulence in the lower
troposphere. However, the full set of the (time-dependent, three-dimensional)
second-order equations is still far too complex and expensive computationally.
Further simplifications are necessary in order to obtain a reasonably simple
turbulence parameterization scheme that can be accommodated by a numer-
ical model of the atmosphere.3

Truncation

A family of second-order closures has been developed by Mellor and Yamada
[141] (see also [142], a comprehensive discussion of the Mellor and Yamada
closures and their numerous derivatives is given in [154]). They utilized the
second invariant A2 = aijaij of the departure-from-isotropy tensor as the
scaling parameter that measures the degree of flow anisotropy. Using the ob-
servation that A2 is small and invoking additional arguments to scale the ad-
vection and the turbulent diffusion terms, they successively discarded terms
of different order in A2 in the second-moment equations. The result proved
to be a hierarchy of truncated turbulence closure schemes, ranging from the
complete second-order closure to a simple algebraic stress model, where all
second-moment equations are reduced to algebraic expressions. That hierar-
chy of closure schemes has found a wide utility in geophysical applications
and is often referred to collectively as the Mellor–Yamada closures ever since.

The scheme termed the level 2.5 Mellor–Yamada scheme has been most
popular in practical applications. The only prognostic equation carried by
that scheme is the TKE equation. The TKE diffusion is usually parameterized
through the simplest down-gradient approximation. All other second-moment
equations are reduced to algebraic expressions by neglecting the time-rate-of-
change, the advection and the turbulent diffusion terms. The pressure–velocity

3 The material in Sects. 2.3, 2.4 and 2.5 is somewhat more technical. Some readers
may prefer to proceed directly to Sect. 3 for an outline of the mass–flux convection
schemes.
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and the pressure–scalar covariances are parameterized through Eqs. (12) and
(13), typically without non-linear terms, or simply through the Rotta-type
return-to-isotropy formulations (10) and (11). Notice that the use of Eqs. (12)
and (13) without non-linear terms instead of Eqs. (10) and (11) does not rad-
ically change the result. Since the linear rapid terms on the r.h.s. of Eqs. (12)
and (13) have the same form as the respective terms in Eqs. (3) and (4), the
only (though not unimportant) effect of their inclusion is to modify dimen-
sionless coefficients in front of various terms in the resulting expressions for
the Reynolds stress and for the scalar fluxes. The dissipation rates of the TKE
and of the scalar variances are parameterized through the algebraic relations
(25). A turbulence model that carries only one prognostic equation, namely,
the TKE equation, is referred to as the one-equation model. In case the trans-
port equation is used for the TKE dissipation rate, or for any quantity emln

(see above), the resulting turbulence model is referred to as the two-equation
model.

Boundary-Layer Approximation

Another simplification typically involved in geophysical applications is the so-
called boundary-layer approximation where the flow is treated as horizontally
homogeneous. This approximation is fairly accurate for large-scale and meso-
scale NWP models, whose grid-box aspect ratio (the ratio of the horizontal
grid size to the vertical grid size) is large. In the framework of the boundary-
layer approximation, all derivatives in x1 and x2 horizontal directions in the
second-moment equations are neglected and the grid-box mean vertical ve-
locity 〈u3〉 is set to zero (in the second-moment equations, but not in the
equations for the mean fields). The one-equation turbulence closure scheme in
the boundary-layer approximation has been probably the most popular tur-
bulence scheme in NWP. The scheme carries the prognostic TKE equation.
All other second-moment equations are reduced to algebraic relations that
constitute a system of linear equations for variances and fluxes. The solution
to that system yields the expressions for the vertical fluxes of momentum and
scalars in the following down-gradient form:

〈u′
3f

′〉 = −Sf le
1/2 ∂ 〈f〉

∂x3
, (26)

where a generic variable f stands for u1, u2, θ or q. The so-called stability func-
tions Sf depend on the dimensionless buoyancy gradient ε−2e2N2 and on the

dimensionless shear ε−2e2
[
(∂ 〈u1〉 /∂x3)

2 + (∂ 〈u2〉 /∂x3)
2
]
. They incorporate

various combinations of dimensionless coefficients that stem from the parame-
terizations of the pressure–velocity and pressure–scalar covariances and of the
dissipation rates. The turbulence length scale l is parameterized algebraically
as discussed above. Examples of one-equation turbulence closure schemes for
NWP purposes are the schemes used operationally in the limited-area model
COSMO (formerly referred to as LM [163, 164, 186]) and HIRLAM [204].
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At the next level of simplification, the time-rate-of-change, the advection
and the turbulent diffusion of the TKE are neglected so that all second-
moment equations are reduced to algebraic relations. The resulting expressions
for fluxes are essentially of the down-gradient form 〈u′

3f
′〉 = −Kf∂ 〈f〉/∂x3,

where the diffusion coefficients Kf are functions of the turbulence length scale
and of the vertical gradients of velocity and buoyancy. These diffusion coeffi-
cients are often adjusted in a somewhat ad hoc manner in order to improve
the overall performance of an NWP model (cf. the situation with mixing-
length models in astrophysics discussed in the chapter “Turbulent Convection
and Numerical Simulations in Solar and Stellar Astrophysics” of this volume).
The algebraic turbulence closure schemes are used, for example, in the global
NWP models GME [135] of the German Weather Service (DWD) and IFS (In-
tegrated Forecasting System) [93] of the European Centre for Medium-Range
Weather Forecasts (ECMWF).

Unfortunately, no simplification is possible without the sacrifice of relevant
information and hence of accuracy, and this is particularly true of truncated
second-order closures. Well-calibrated algebraic and one-equation turbulence
closure schemes show a good performance in turbulent flows where the static
stability is close to neutral. However, they are known to have serious problems
in stratified flows, both stable and convective.

Performance of Simplified Closures in Stratified Flows

Turbulence in stably stratified boundary layers is weak and often intermittent
in space and time [77]. The stable boundary layer (SBL) is exposed to various
types of meso-scale motions, such as gravity waves and meanders of cold air, to
horizontal inhomogeneity of the underlying surface, and to the radiation flux
divergence. These and other effects significantly complicate the SBL structure
[62, 133, 134, 182, 217]. Current turbulence schemes do not include many of
these important effects in a physically meaningful way [132] and are not able to
satisfactorily describe the SBL turbulence structure. Most current turbulence
schemes tend to extinguish turbulence in case of strong static stability, when

the gradient Richardson number Ri =
[
(∂ 〈u1〉 /∂x3)

2 + (∂ 〈u2〉 /∂x3)
2
]−1

N2

exceeds its critical value of order 0.2 (see the chapter “Turbulence in Astro-
physical and Geophysical Flows” of this volume for further discussion of this
issue). Then, the schemes are tuned in an ad hoc way to prevent turbulence
from dying out entirely as the static stability increases. A simple device of-
ten applied in NWP models is a “minimum diffusion coefficient”. That is,
the eddy diffusivity for momentum and scalars is limited from below by a
predefined constant value to provide “residual” mixing when the turbulence
parameterization scheme predicts no turbulence at all. A tuning device of this
sort may have a detrimental effect on the NWP model performance in some
important situations. For example, it may destroy a delicate balance of phys-
ical processes (radiative and evaporative cooling, advection by mean vertical
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velocity, and turbulent entrainment) near the top of the stable or neutral PBL
capped by stratocumulus clouds, leading to the disappearance of clouds where
they should actually be maintained.

A physically plausible approach to the problem of maintaining turbulence
in case of strong static stability was taken by Raschendorfer [163, 164]. He
surmised that turbulence in the shear-driven SBL would not collapse entirely,
if the underlying surface at the sub-grid scale is horizontally inhomogeneous
with respect to the temperature. Spatial buoyancy differences due to this
temperature inhomogeneity induce horizontal pressure gradients that in turn
set the air in motion. Although these air motions experience friction at the
underlying surface, they may not contribute to the grid-box mean momentum
flux as the flow patterns in different directions may counteract each other
(cf. cell-like motions in the shear-free CBL that efficiently transport heat but
make no contribution to the grid-box momentum flux). However, they do
contribute to the grid-scale mean TKE, preventing the SBL from collapsing
entirely. Having assumed the above mechanism of maintenance of turbulence
in stable stratification, Raschendorfer extended the one-equation turbulence
closure scheme of the NWP model COSMO so that the scheme is guarded
against sharp turbulence cut-off at a critical Richardson number.

Worthy of mention is an attempt to derive eddy viscosity in stably strati-
fied turbulent flows from first principles made by Sukoriansky et al. [189, 191].
Their spectral model is free of the sharp cut-off critical Richardson number
deficiency. It predicts turbulent eddy diffusivities for wind and scalar quanti-
ties in good agreement with observations. The new theoretical findings have
been used in the framework of the two-equation e-ε turbulence closure scheme
to model atmospheric SBL over sea ice [190].

Difficulties of simplified turbulence closure schemes in convective condi-
tions are associated first of all with their inability to adequately account for
non-local transport properties of convective turbulence. This is not particu-
larly surprising, however, considering that in the simplified truncated closures
the third-order terms largely responsible for non-local transport of momen-
tum and scalars are either entirely neglected or parameterized very crudely.
Local turbulence schemes are typically unable to reproduce the well-mixed
character of the CBL with counter–gradient fluxes of scalars often encoun-
tered in the upper part of the boundary layer. They also fail to correctly
represent entrainment at the CBL top, leading to erroneous prediction of the
CBL temperature and humidity and of the CBL height. One way to cope with
these difficulties is to introduce more of the essential physics into the second-
order closure scheme, e.g. by using the skewness-dependent formulations of
third-order transport terms discussed above.

Notice that simplified truncated second-order closure schemes are almost
inevitably non-realisable. In order to prevent such schemes from producing
unphysical solutions, a clipping operation is usually applied. Normal stresses
and scalar variances are set to zero if they become negative, and Schwarz’
inequalities for the third-order moments are strictly enforced. The clipping
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operation has proven to be an effective tool [55] and is considered to be legiti-
mate in engineering and geophysical applications [173]. It should, however, be
avoided whenever possible; that is to say, effort should be mounted to develop
closure schemes where clipping is reduced to a minimum.

The Similarity Approach

An alternative way to describe boundary-layer turbulence and shallow convec-
tion is through the use of the similarity theory for boundary-layer flows. The
approach basically amounts to representing the vertical profiles of turbulent
quantities through the shape functions, using the scales of variables pertinent
to the mixing regime in question. The scaling ideas should be consistent with
the budget equations for turbulence moments, at least in the integral sense (cf.
the surface-layer flux–profile relationships of the Monin–Obukhov similarity
theory considered in the next section).

Taking the similarity approach, shapes of the vertical profiles of the
turbulent diffusion coefficients are prescribed and the magnitudes of diffu-
sion coefficients and of other turbulence characteristics, such as the fluxes
due to entrainment at the boundary layer top, are expressed through the
appropriate scales of length, velocity, temperature and humidity. To this
end, the now classical Deardorff convective scaling [53, 54] is widely used
with the CBL depth h as the bulk length scale, and w∗ = (hBs)

1/3 and
θ∗ = 〈u′

3θ
′〉s /w∗ as the bulk velocity and potential-temperature scales, re-

spectively. Here, Bs = β3 〈u′
3θ

′
v〉s is the surface buoyancy flux, and 〈u′

3θ
′〉s

and 〈u′
3θ

′
v〉s are the surface fluxes of potential temperature and of vir-

tual potential temperature, respectively. The humidity scale is introduced
similarly to the potential-temperature scale. Power-law functions of dimen-
sionless height x3/h are commonly utilized for the vertical-profile shape func-
tions. For example, turbulent temperature diffusivity in shear-free CBL is
expressed as Kθ/w∗h = CKθ(x3/h) (1 − Centrx3/h)α, where CKθ, Centr and
α are disposable parameters, and Centr is chosen so as to provide the right
amount of entrainment at the CBL top. In order to account for the produc-
tion of turbulence energy due to mean velocity shear, a convective velocity
scale is modified through the incorporation of the surface friction velocity

u∗ =
(
〈u′

3u
′
1〉

2
s + 〈u′

3u
′
2〉

2
s

)1/4

, where the subscript “s” indicates the surface
values. Using the similarity approach, momentum and scalar fluxes are not
directly dependent on local gradients; rather they are functions of the inte-
gral scales that characterize the CBL as a whole and thus account (at least
implicitly) for the non-local effects. Such a “non-local” scheme is proposed in
[92], using earlier ideas presented in [200].

An advanced boundary layer mixing scheme based on the similarity ap-
proach was developed by Lock et al. ([127, 138], see also [125, 126]) for use in
the UK Met Office NWP and climate models [48]. The scheme incorporates an
entrainment parameterization based on a generalized turbulent velocity scale
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that accounts for the generation of turbulence due to the mean velocity shear,
due to the surface heating, due to the cloud-top radiative cooling, and due
to the evaporative cooling of entrained air. The unstable layers are identified
on the basis of the buoyancy of undilute parcels lifted from the surface and
lowered from the cloud top with due regard for latent heat effects. The mixing
regimes considered by the scheme range from dry SBL to a complex configu-
ration, where a layer of stratocumulus clouds is separated from the unstable
surface layer by a cumulus cloud layer. As different mixing parameterizations
are used for different regimes, the scheme includes a sophisticated decision tree
to discriminate between various boundary-layer mixing regimes. It should be
noted that the scheme does not operate throughout the atmosphere. It is
applied to about the lowest 2.5 km [127]. Mixing through the rest of the at-
mosphere, as well as through the cumulus cloud layers diagnosed within the
area of operation of the turbulence scheme, is computed with the convection
scheme [82]. Convection schemes currently used in NWP and climate models
are developed on the basis of the mass–flux approach (Sect. 3).

2.4 The Surface Layer

The layer in the immediate vicinity of the underlying surface, the surface layer,
deserves special attention. The surface layer looms large in meteorology as it is
this layer where the interaction of the atmosphere with the underlying surface
takes place. In NWP and climate models, the surface-layer resistance, heat
and mass transfer laws are used to compute surface fluxes of momentum, heat,
water vapour, and if necessary, of other scalar quantities, and are, therefore,
the key components of the physical parameterization package.

The now classical Monin–Obukhov similarity theory [151, 155] has been
commonly used for more than half a century to describe the vertical structure
of the atmospheric surface layer. For lack of space, it is impossible to give an
account of the Monin–Obukhov theory in the present paper. Readers are re-
ferred to [63, 67, 95, 152, 183, 216], where various aspects of the surface-layer
similarity are discussed. Here we only present the Monin–Obukhov surface-
layer flux–profile relationships for the wind velocity and for the potential tem-
perature (the formulation for specific humidity is similar to that for potential
temperature). They read

u(z) − us =
u∗
κ

[
ln

z

z0u
+ ψu(z/L)

]
, (27)

θ(z) − θs = −Prn
〈w′θ′〉s
κu∗

[
ln

z

z0θ
+ ψθ(z/L)

]
. (28)

Here, z = x3 is the height above the underlying surface, u = u1 is the compo-
nent of the wind vector along the x1 horizontal axis that is taken to be aligned
with the surface stress (then the wind component along the x2-axis is zero),
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w = u3 is the vertical component of the wind vector (this notation is used to
stress the one-dimensionality of the approach), us and θs are the values of u
and θ, respectively, at the underlying surface (us is zero at the rigid surface),
z0u and z0θ are the roughness lengths with respect to wind velocity and po-
tential temperature, respectively, and Prn is the turbulent Prandtl number at
neutral static stability. The dimensionless functions of the Monin–Obukhov
similarity theory, ψu and ψθ, account for the effect of static stability in the
surface layer. The Obukhov length [155] is defined as L = −u3

∗/(κBs). The
von Kármán constant κ is traditionally included into the definition of L. At
z/L � 1, i.e. in the lower part of the stratified surface layer, or through-
out the surface layer in near-neutral conditions, Eqs. (27) and (28) reduce to
the classical logarithmic profiles, where the roughness lengths are the princi-
pal parameters that describe the interaction of the flow with the underlying
surface.

The surface-layer formulations are often presented in terms of the drag
coefficient and the heat and mass transfer coefficients. One more alternative
formulation is through the resistance of the surface layer to the transfer of
momentum, heat and mass. The resistance is a more “physical” parameter,
i.e. the parameter more directly related to the flux and the gradient of the
quantity in question than the roughness length that should be viewed as a
more “derived” parameter [136]. Nonetheless, the majority of the surface-
layer formulations have been given in terms of the roughness lengths and
the Monin–Obukhov similarity functions, perhaps due to their convenience in
representing the profiles.

There is a substantial body of literature on the Monin–Obukhov surface-
layer similarity functions. Readers are referred to the review articles [88, 89]
and to the historical surveys [38, 64], where numerous further references can be
found. As to the parameterization of roughness lengths with respect to wind
and scalar quantities (more generally, the air–land and air–sea interaction),
these are discussed in [8, 24, 33, 35, 67, 68, 99, 102, 105, 136, 165, 223], to
mention a few.

It should be emphasized that the Monin–Obukhov flux–profile relation-
ships are consistent with the budget equations for the second-order turbu-
lence moments. In essence, they represent the second-moment budgets that
are truncated under the surface-layer similarity-theory assumptions. These are
that (i) turbulence is continuous, stationary and horizontally homogeneous,
(ii) third-order turbulent transport is negligible, and (iii) the surface layer
is a small portion of the PBL, so that the directional wind turning is negli-
gible and turbulent fluxes can be considered approximately height-constant,
equal to their surface values (in other words, changes of fluxes over the sur-
face layer are small as compared to their changes over the entire PBL). For
example, the logarithmic wind profile is readily obtained from the TKE bud-
get equation where only the shear-production term and the dissipation term
are retained. Using the surface-layer scaling relations, e ∝ u2

∗ and l ∝ z, to
express the TKE dissipation rate through Eq. (25) along with the assumption
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of height-constant momentum flux, 〈u′w′〉 = −u2
∗, yields the flux gradient-

relationship d 〈u〉 /dz ∝ u∗/z (the omitted proportionality constant is the
reciprocal of the von Kármán constant). Its integration over z results in the
logarithmic wind profile. The lower limit of integration is the height z0u where
the wind profile extrapolated logarithmically downward approaches its surface
value (zero over the rigid surface). Since the surface-layer flux–profile relation-
ships are consistent with the (truncated) second-moment budgets, they suffer
from the same shortcoming as the (truncated) second-order closures. They are
known to experience problems in strongly convective and in strongly stable
flows.

In conditions of free convection, when the mean wind vanishes, the surface-
layer flux–profile relationships predict zero fluxes. The failure is due to the
neglect of the CBL-scale cell-like coherent motions. As the flow patterns in dif-
ferent directions effectively counteract each other, these motions make no con-
tribution to the transfer of mean momentum (mean over a horizontal area that
is large enough to embrace a multitude of convective cells). However, these mo-
tions efficiently transport heat and other scalar quantities. Businger [39] intro-
duced the concept of “minimum friction velocity”, that is the friction velocity
due to the effect of the CBL-scale motions which do experience friction at the
surface, although mean wind is zero. The minimum friction velocity was as-
sumed to scale on the Deardorff convective velocity w∗ and to additionally de-
pend on z0u. Using the above concept, a number of heat and mass transfer laws
have been proposed that are suitable for calculation of surface fluxes in con-
ditions of free convection [4, 22, 171, 188, 193, 221, 224]. Comprehensive sum-
maries are given in [221, 224]. Some authors used the classical Nu ∝ Ra1/3 heat
transfer law to estimate surface fluxes in free convection. Notice that the Nus-
selt number Nu and the Rayleigh number Ra explicitly depend on the molec-
ular viscosity and on the molecular heat conductivity of the medium in ques-
tion. A generalization of this law to the case of a two-component medium, e.g.
moist air, was proposed in [72, 73]. Examples of its successful application to
the computation of surface fluxes of sensible and latent heat are given in [9, 78].

Problems of the surface-layer similarity theory in conditions of strong static
stability are associated with the intermittent nature of turbulence and with
many other effects, such as internal gravity waves and horizontal inhomogene-
ity of the underlying surface, that complicate the surface-layer structure (see
e.g. [62, 76, 77, 132–134]). Traditional log-linear flux–profile relationships of
the Monin–Obukhov theory predict zero fluxes as the static stability increases
and the gradient Richardson number approaches its critical value. This is
in conflict with most of the observational data which indicate that turbu-
lence very often survives well above the critical Richardson number threshold
and the surface fluxes of momentum and scalars are weak but non-negligible.
Recall that the Monin–Obukhov flux–profile relationships are derived under
a number of simplifying assumptions which restrict their limits of applica-
bility. Their failure to describe the real-world strongly stable surface layers
is not particularly surprising. Taking a pragmatic approach, the flux–profile
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relationships are adjusted in a somewhat ad hoc manner to enable the fluxes
to be nonzero at sufficiently strong static stability (e.g. [24]). The study of
the stably stratified PBL, including the surface layer, is a very active research
area in which progress is being made and more physically justified remedial
measures are proposed. Mention should be made of a series of publications
by Zilitinkevich and co-authors who examined the effects of static stability
at the SBL outer edge, that is characterized by the buoyancy frequency N ,
on the SBL mean and turbulence structure. The exchange of energy, both
kinetic and potential, between the SBL and the overlying stably stratified
atmosphere due to the radiation of internal gravity waves was analysed in
[182, 217]. Equations for the SBL depth, the SBL resistance and heat transfer
laws, and the surface-layer flux–profile relationships were modified to incor-
porate the dependence on N [218–220, 222, 227]. The surface–flux calculation
algorithms were modified with due regard for the effect of N and applied to
determine surface fluxes of momentum and heat in numerical models of the
atmosphere [157, 228, 229].

2.5 Extension to Saturated Air

Up to this point the atmospheric air has been treated as unsaturated, char-
acterized by the two thermodynamic variables, θ and q. The thermodynamic
structure of the real atmosphere is strongly complicated by the presence of
clouds. Clouds produce precipitation. They strongly interact with atmospheric
radiation, changing the atmosphere energy budget, the energy budget of the
underlying surface and of the PBL in particular. They also change the buoy-
ancy of air parcels, thus affecting the rate of production/destruction of TKE
by the gravitational force. All these effects related to the presence of clouds
should be accurately represented in numerical models of the atmosphere.
As far as the parameteriations of turbulence and of shallow non-precipitating
convection are concerned, the primary goal is to account for the effect of clouds
on the buoyancy production/destruction of the Reynolds stress, including its
trace – the TKE, and of the scalar fluxes. The key issue is an accurate represen-
tation of the horizontal fractional cloud coverage of a given numerical-model
grid box and of the amount of cloud condensate it contains [199].

In order to account for the presence of cloud condensate, turbulence and
shallow-convection parameterization schemes are formulated in terms of vari-
ables that are approximately conserved for phase changes in the absence of
precipitation. Consider first warm clouds that only contain water in liquid
form. Possible extension to the case of three phases including cloud ice is
briefly discussed at the end of this section. One pair of moist quasi-conservative
variables often used in models of non-precipitating clouds consists of the to-
tal water specific humidity qt and the liquid water potential temperature θl

defined as [25, 56]

qt = q + ql, θl = θ − θ

T

Lv

cp
ql, (29)
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where ql is the liquid water specific humidity, Lv is the latent heat of vapour-
ization, cp is the specific heat of air at constant pressure, and T is the absolute
temperature related to the potential temperature through T = θ(P/P0)Rd/cp ,
P and P0 being the atmospheric pressure and its reference value, respectively.
No supersaturation is assumed, so that ql = qt − qs if qt > qs, where qs is the
saturation specific humidity, and ql = 0 otherwise. Clearly, qt and θl reduce
to the dry variables q and θ, respectively, in unsaturated conditions.

Using the above moist quasi-conservative variables, the second-moment
equations (3, 4, 5, 6, 7, 8 and 9) remain the same to within the substitution
of θl and qt for θ and q, respectively. However, the buoyancy terms (the terms
with βi) in Eqs. (3), (9), (4) and (5) should be modified with due regard
for the presence of cloud condensate. This problem amounts to modelling
the virtual potential temperature flux 〈u′

iθ
′
v〉 and the scalar–virtual potential

temperature covariances 〈θ′lθ′v〉 and 〈q′tθ′v〉 in terms of fluctuations of θl and qt.
Using Eq. (29) and a generalized virtual potential temperature that accounts
for the water loading effect [15, 124],

θv = θ [1 + (R− 1) q − ql] , (30)

the above covariances are given by

〈f ′θ′v〉 = [1 + (R− 1) 〈qt〉 −R 〈ql〉] 〈f ′θ′l〉 + (R− 1) 〈θ〉 〈f ′q′t〉

+
{
〈θ〉
〈T 〉

Lv

cp
[1 + (R− 1) 〈qt〉 −R 〈ql〉] −R 〈θ〉

}
〈f ′q′l〉 , (31)

where R = Rv/Rd, and a generic variable f stands for ui, θl or qt. In order to
arrive at Eq. (31), the third-order covariances and the pressure fluctuations

are neglected (the latter assumption yields θl = θ − 〈θ〉
〈T 〉

Lv

cp
ql).

In the “dry” limit, where a given numerical-model grid box is cloud free,
Eq. (31) reduces to

〈f ′θ′v〉d = [1 + (R− 1) 〈qt〉] 〈f ′θ′l〉 + (R− 1) 〈θ〉 〈f ′q′t〉 , (32)

where θl and qt coincide with θ and q, respectively, as ql = 0. In the “wet”
limit, where a given grid box is uniformly saturated, 〈f ′θ′v〉 can be expressed,
to a good approximation, in terms of 〈f ′θ′l〉 and 〈f ′q′t〉 as follows:

〈f ′θ′v〉w =
[
1 + (R− 1) 〈qt〉 −R 〈ql〉 −

AP
Q

]
〈f ′θ′l〉

+
[
(R− 1) 〈θ〉 +

A
Q

]
〈f ′q′t〉 , (33)

where A = 〈θ〉
〈T 〉

Lv

cp
[1 + (R− 1) 〈qt〉 −R 〈ql〉] − R 〈θ〉, P = 〈T 〉

〈θ〉 〈qsl,T 〉, Q =

1 + Lv

cp
〈qsl,T 〉, and 〈qsl,T 〉 ≡ ∂qs

∂T

∣∣∣
T=〈Tl〉

is computed from the Clausius–

Clapeyron equation, ∂qs/∂T = Lvqs/(RvT
2). A first-order Taylor expansion
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of the saturation-specific humidity qs(T ) about T = 〈Tl〉 is used to derive
Eq. (33).

The simplest way to determine 〈f ′θ′v〉 is to use either Eq. (32) or Eq. (33),
assuming that a given numerical-model grid box is either all clear or all cloudy,
respectively. This “all-or-nothing” approach may be used in cloud-resolving
models (although some caution is still required). Since it essentially assumes
no sub-grid scale fluctuations of cloud water related variables, it is not ap-
plicable in the framework of the NWP and climate models whose horizontal
resolution is too coarse to resolve cloud-scale motions. As sizable SGS fluc-
tuations of cloud water related variables exist, an expression is needed that
is valid not only in the dry and wet limits, but also in the general case of
fractional cloudiness. To this end, an interpolation formula is used,

〈f ′θ′v〉 = (1 − R̂) 〈f ′θ′v〉d + R̂ 〈f ′θ′v〉w , (34)

where R̂ is the interpolation variable satisfying 0 ≤ R̂ ≤ 1. In case the PDFs
of SGS fluctuations of θl, qt and u3 (vertical velocity) are Gaussian and the
fluctuations of u3 and ql are uncorrelated, R̂ is identical to the fractional cloud
cover Ĉ. In case the fluctuations of u3 and ql are correlated, the PDFs can
differ significantly from the Gaussians, and R̂ can deviate widely from Ĉ. This
is the case for shallow cumuli, where the fractional cloud cover is small, u3

and ql are strongly correlated, the PDFs of cloud related variables are highly
skewed, and R̂ can be several times larger than Ĉ [121]. In order to account for
both Gaussian and non-Gaussian cases, Eq. (34) can be conveniently recast
as follows:

〈f ′θ′v〉 = (1 − Ĉ) 〈f ′θ′v〉d + Ĉ 〈f ′θ′v〉w + FNGĈ(1 − Ĉ) 〈f ′θ′v〉w , (35)

where a correct behaviour in the dry Ĉ = 0 and the wet Ĉ = 1 limits is
ensured. The deviations from the Gaussian limit are accounted for through
the correction function FNG. It is a complicated function of various cloud
related quantities, such as the mean saturation deficit, variances of θl, qt and
u3, and their skewness. In practice, simplified formulations of FNG are utilized
that ignore the dependencies on some of these quantities. Usable formulations
that provide a smooth transition between the Gaussian state and the non-
Gaussian skewed state are presented in e.g. [19, 20, 47, 121, 122].

The fractional cloud cover Ĉ should now be determined. Cloud-cover pa-
rameterization schemes proposed to date vary in terms of their complexity
and physical realism. Comprehensive reviews are given in [198, 199], where
further references can be found. Here, only the very basic ideas are briefly
outlined.

The commonly used relative humidity schemes are termed so since they
employ the grid-scale mean relative humidity 〈RH〉 as the chief predictor of
the cloud cover. The sub-grid scale fluctuations of temperature and humidity
enable clouds to form even though a numerical-model grid box in question is
unsaturated on the average, 〈RH〉 < 1. A critical relative humidity 〈RH〉cr,
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below which Ĉ = 0, is introduced, and the fractional cloud cover Ĉ is assumed
to increase monotonically with increasing 〈RH〉 until Ĉ = 1 when 〈RH〉 = 1.
Additional predictors, such as the grid-scale mean vertical velocity, are used
in some schemes. Although the SGS variability of temperature and humid-
ity is implicit in the relative humidity schemes, the connection between the
fractional cloud cover and the SGS dynamics is rather loose.

The schemes referred to as the SGS statistical cloud schemes, pioneered
by Sommeria and Deardorff [181] and Mellor [140], make use of PDFs of the
SGS humidity (and temperature) fluctuations. Once the PDF is specified, the
fractional cloud cover is simply the integral over a saturated part of the PDF.
Since clouds can result both from the humidity fluctuations and from the
temperature fluctuations, the latter ones change the local saturation vapour
pressure, it is convenient to introduce, following Mellor [140], a variable s =
Q−1 (〈qt〉 − 〈qsl〉 + q′t − Pθ′l), where 〈qsl〉 = qs(〈Tl〉) (s here should not be
confused with the dry static energy used in Sect. 3.1). The variable s represents
the local value of the liquid water specific humidity computed with respect to
the linearized saturation specific humidity curve. This quantity has already
been used above to express 〈f ′q′l〉 through 〈f ′q′t〉 and 〈f ′θ′l〉 in Eq. (31), leading
to Eq. (33). Assuming that no supersaturation occurs, the fractional cloud
cover and the grid-box mean liquid water-specific humidity are given by

Ĉ =
∫ ∞

0

G(s)ds, 〈ql〉 =
∫ ∞

0

sG(s)ds, (36)

where G(s) is the PDF of s. If a Gaussian PDF is assumed, then Ĉ =
1
2

[
1 + erf

(
〈s〉√
2σs

)]
and 〈ql〉 = Ĉ 〈s〉 + σs√

2π
exp

(
〈s〉2
2σ2

s

)
, where erf is the error

function, 〈s〉 = Q−1 (〈qt〉 − 〈qsl〉) is the mean value of s and σs ≡
〈
s′2
〉1/2 =

Q−1
[〈
q′2t
〉

+ P2
〈
θ′2l
〉
− 2P 〈q′tθ′l〉

]1/2 is its standard deviation. Notice that σs

depends on the variances of qt and of θl and on their covariance. This provides
an important link between the cloud cover and the dynamics of SGS motions.
Apart from the Gaussian PDFs, various other PDFs have been proposed. A
number of them are non-symmetric. Besides the first and the second moments
of the distribution (i.e. the mean and the variance), they require higher-order
moments, e.g. skewness, as an input. Tompkins [198, 199] presented a com-
prehensive review of the PDFs proposed by various authors and discussed
several consistency issues, such as the use of statistical cloud schemes in the
atmospheric models that carry a prognostic equation for 〈ql〉. He also showed
that there is no clear distinction between the statistical schemes and the rel-
ative humidity schemes. If the PDF moments are kept constant in space and
time, the statistical cloud-cover formulations can be recast in terms of relative
humidity.

Although prognostic equations may be (and often are) used to compute
the PDF moments, the fractional cloud cover is determined diagnostically in
the framework of statistical cloud schemes. Some other schemes, exemplified

This copy belongs to 'acha04'



Turbulence in the Lower Troposphere 189

by the Tiedtke scheme [197], take a different approach – they determine Ĉ
from its own prognostic equation. Merits and shortcomings of such schemes
are discussed in [40, 81, 115, 199, 206].

The qt-θl system outlined above can be extended to the case of three
phases including cloud ice [56]. To this end, the total water-specific humidity
is generalized to account for the presence of ice, qt = q + ql + qi, where qi is
the “solid water specific humidity” (the mass of cloud ice per unit mass of
moist air), and the ice–liquid water potential temperature is introduced, θil =
θ− θ

T
Lv

cp
ql− θ

T
Li

cp
qi, where Li is the specific heat of sublimation. The saturation

specific humidity requires a generalized definition, the simplest of which is
qs = (1−Fi)qsl +Fiqsi, where Fi = qi/(ql + qi) is the cloud-ice fraction of the
total cloud condensate, and qsl and qsi are the saturation-specific humidity for
the vapour–liquid equilibrium and for the vapour–ice equilibrium, respectively.
If ice and liquid water are allowed to co-exist over a certain temperature range,
a simple function of temperature can be used to determine Fi. Alternatively,
a rate equation for Fi can be employed [56]. The use of the qt-θil system raises
various issues, such as allowance for supersaturation and consistency with the
prognostic equations for 〈qi〉 and its precipitating components that are carried
by many atmospheric models. These issues necessitate an extensive discussion
that is beyond the scope of the present paper.

In closing this section it should be emphasized that an accurate predic-
tion of the fractional cloud cover and of the amount of cloud condensate is
of great importance for radiation calculations. The SGS cloud scheme is thus
an essential component of the physical parameterization package of an atmo-
spheric model that provides a tight coupling between various parameterization
schemes.

3 Mass–Flux Convection Schemes

This section discusses the mass–flux modelling framework that is widely
used to parameterize convection, both deep precipitating and shallow non-
precipitating, in numerical models of the atmosphere. First, the most salient
features of the mass–flux convection schemes, as they are currently used in
NWP and related applications, are recollected. Then, the analogy between
budget equations for the second-order moments of fluctuating fields derived
within the mass–flux modelling framework and within the ensemble–mean
second-order modelling framework are examined. These exercises help to elu-
cidate the physical meaning of some closure assumptions and disposable pa-
rameters of mass–flux schemes. They also demonstrate the similarities and the
differences between the two approaches and suggest how the mass–flux param-
eterizations can be formulated in terms of the ensemble–mean second-order
closures and vice versa. The analysis of the second-order moment budgets
is performed using the simplest “two-delta-function” mass–flux framework.
Most currently used mass–flux schemes are (formally) based on a slightly
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more complex “three-delta-function” framework. However, the use of a sim-
plified two-delta-function framework does not affect the principal results from
the analysis.

3.1 Outline of Basic Features

In this section, the basic features of the mass–flux convection schemes are out-
lined. Attention is focused on the scheme developed by Tiedtke [196] (hereafter
T89). That scheme is taken as an example as it was the first comprehensive
mass–flux scheme that found a wide utility in NWP and climate modelling.
Other mass–flux convection schemes have been developed to date, as for in-
stance, the Kain–Fritsch scheme [96–98], the Gregory and Rowntree scheme
[82], and the scheme used in the IFS of ECMWF [18, 93]. Further exam-
ples are the schemes proposed by Emanuel [59] and by Bechtold et al. [17].
Although various mass–flux schemes differ from the T89 scheme in many de-
tails, they rest on the same basic assumptions. Early ideas regarding the pa-
rameterization of convection in atmospheric models, including the moisture
convergence schemes (e.g. [106, 107]), convective adjustment schemes (e.g.
[26, 27]), and mass–flux schemes (e.g. [13, 32]), are discussed in [12, 65, 195].
A comparative analysis of several cumulus parameterization schemes is given
in [185].

The T89 scheme, as well as its derivatives, utilises a triple top-hat decom-
position. A fluctuating quantity in question is represented as

f = aufu + adfd + aefe, (37)

where a generic variable f refers to the vertical velocity w, the dry static en-
ergy per unit mass s = cpT +gz, the specific humidity q, the specific cloud wa-
ter content ql, or to any other quantity treated by a parameterization scheme.
We focus attention on the mass–flux parameterization of scalar transport. Mo-
mentum transport by convection and its parameterization through the mass–
flux approach are considered in e.g. [80, 101]. The notation with w = u3,
z = x3 and g = −g3 is used in this section to stress the one-dimensionality
of the approach, where only vertical convective transport is considered. An
overbar denotes a horizontal mean, and the subscripts “u”, “d” and “e” re-
fer to the contribution from convective updraughts, from convective down-
draughts and from the environmental air, respectively. The fractional areas
of updraughts, au, of downdraughts, ad, and of environmental air, ae, satisfy
au + ad + ae = 1.

Notice that a coherent top-hat part of the quantity in question does not
contain residual “sub-plume” fluctuations. Hence, the moments of fluctuating
fields in the mass–flux approximation do not generally coincide with the mo-
ments in the ensemble framework (although they may be close to each other
if the coherent part dominates). An overbar is used to denote quantities in
the mass–flux approximation.
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Although the T89 scheme is formally based on the triple decomposition
(37), the properties of environmental air do not appear in the governing equa-
tions. The reason is that a mean over the environment is taken to be equal
to a horizontal mean. For scalar quantities, this means se = s, qe = q and
qle = ql. Assuming further that updraughts and downdraughts are in a steady
state, the T89 scheme solves a number of ordinary differential equations (in
the vertical co-ordinate) for the mass fluxes and for the fluxes of scalar quan-
tities in convective updraughts and convective downdraughts. The equations
for convective updraughts read

∂Mu

∂z
= Eu −Du, (38)

∂

∂z
MuXu = EuX −DuXu + ρauFxu, (39)

where Mu is the updraught mass flux defined as

Mu = ρau(wu − w), (40)

ρ is the density, and Eu and Du are the rates of mass entrainment and detrain-
ment per unit length. In order to closely follow the nomenclature traditionally
used in the description of mass–flux schemes, the density appears explicitly in
the equations of this section. A scalar X stands for s, q or ql, and Fx stands for
the source of the scalar X due to condensation/evaporation and precipitation
fall-out. Similar equations are formulated for convective downdraughts, except
that liquid water flux is zero. The problem is closed through the use of several
parameterization rules to specify the vertical extent of convection, the fluxes
through the cloud base and the cloud top, the type of convection (penetrative,
mid-level or shallow), and the rates of entrainment and detrainment.

The vertical extent of convection is specified using the parcel method (see
e.g. [174]). The fluxes through the cloud base are related to the moisture
convergence in the sub-cloud layer (convergence of moisture fluxes due to
both resolved-scale and sub-grid scale motions), as is the case in the original
T89 scheme. An alternative formulation is through the convective available
potential energy (CAPE), as, for example, in the ECMWF IFS convection
scheme [93] in case of deep convection. The entrainment and detrainment
rates are split into two parts, turbulent entrainment/detrainment through
the cloud edges (lateral boundaries) and organized entrainment/detrainment
through the cloud edges and through the cloud base and the cloud top. The
organized entrainment through the updraught edges is set proportional to
the large-scale moisture convergence. It is only considered for penetrative and
mid-level convection and for the layer from the cloud base up to the level
of strongest vertical ascent. The organized detrainment of updraughts occurs
at the cloud top. The organized detrainment of downdraughts occurs in the
sub-cloud layer. The rates of turbulent entrainment and detrainment are set
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proportional to the mass flux, that is Eu = εuMu and Du = δuMu for the
updraughts (similar for the downdraughts), where εu and δu are simply taken
to be constant (different for different types of convection).

The simplifying assumptions of the T89 scheme, as well as of other mass–
flux convection schemes, are many and varied. The two crucial assumptions
have already been mentioned above: (i) convection is in a quasi-steady state
and (ii) the mean over the environment is equal to the mean over a grid
box. Several other points should be emphasized at once. First, although con-
vective motions are driven by buoyancy, the buoyancy term is not explicitly
present in Eq. (38). Second, neither Eq. (38) for the mass–flux nor Eq. (39) for
the flux of a scalar contains pressure terms. In ensemble–mean second-order
closure models, the pressure–velocity and pressure–scalar correlations appear
explicitly (see Sect. 2). The fact that these terms do not appear explicitly
in mass–flux equations suggests that the other terms serve to perform their
function. This issue is discussed below. The third point to note is that the up-
draught fraction au and the updraught vertical velocity wu are not estimated
separately – only their combination, namely, the updraught mass flux Mu, is
computed through Eqs. (38) and (40).

Some mass–flux convection schemes make use of an equation for the up-
draught kinetic energy. It reads (see e.g. [93])

1
2
∂w2

u

∂z
=

1
Ck1(1 + Ck2)

g
Tvu − T

T
− μu

Mu
(1 + Ck3Ck4)w2

u, (41)

where Tv is the virtual temperature, and Ck1, Ck2, Ck3 and Ck4 are empirical
dimensionless constants. The “mixing coefficient” μu is set equal to either Eu

or Du, whichever is larger. The vertical acceleration on the left-hand side of
Eq. (41) is a difference between a buoyancy force and a drag force represented
by the first term and the second term on the r.h.s. of Eq. (41), respectively.
Equation (41) originates from the work of Simpson et al. ([177], see also [79,
178]). It is meant to describe the vertical acceleration of a cumulus tower that
is treated as an idealized jet, a buoyant rising thermal, or a “thermal” with
vortical internal circulation. The tower kinetic energy is given by 1

2w
2
u. In

this respect, it is not clear if Eq. (41) is a good approximation to the budget
equation for the kinetic energy of convective motions averaged over a grid box
of a numerical model.

3.2 The Two-Delta-Function Mass–Flux Framework

In this section, the conventional two-delta-function mass–flux framework that
has been widely used to parameterize atmospheric convection, shallow cumu-
lus convection in particular, is briefly described. A more detailed account of
the mass–flux framework is given in [52, 83, 110, 111, 162].

In the two-delta-function mass–flux framework, a fluctuating quantity in
question is represented as
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f = aufu + adfd, (42)

where the subscripts “u” and “d” refer to contributions from convective up-
draughts and convective downdraughts, respectively. The fractional areas of
updraughts, au, and downdraughts, ad, satisfy au + ad = 1. The decomposi-
tion (42) can be formulated in terms of the probabilities of convective motions
to be either updraughts, Pu, or downdraughts, Pd, so that Pu + Pd = 1 (e.g.
[146, 209, 225]). The downdraught in the two-delta-function mass–flux frame-
work should not be confused with the downdraught in the three-delta-function
framework. Equation (37) reduces to Eq. (42) if the downdraught and the en-
vironment in the triple decomposition are treated together.

All moments of fluctuating fields in the mass–flux approximation are com-
puted through the following averaging rule:

w′nX ′m = a (wu − w)n (
Xu −X

)m
+ (1 − a) (wd − w)n (

Xd −X
)m

= a(1 − a)
[
(1 − a)m+n−1 − (−a)m+n−1

]
(wu − wd)

n (Xu −Xd)
m
,

(43)

where a = au and 1− a = ad. According to Eq. (43), the flux of a quantity X
is given by

w′X ′ = a(wu − w)(Xu −X) + (1 − a) (wd − w)
(
Xd −X

)

= a(1 − a) (wu − wd) (Xu −Xd) =
Mc

ρ
(Xu −Xd), (44)

where Mc is the convective mass flux introduced in [162],

Mc = ρa(1 − a)(wu − wd). (45)

The vertical-velocity variance and the scalar variance are given by

w′2 = a(1 − a)(wu − wd)2, X ′2 = a(1 − a)(Xu −Xd)2, (46)

and the third-order moments are given by

w′3 = a(1 − a)(1 − 2a)(wu − wd)3, (47)

X ′3 = a(1 − a)(1 − 2a)(Xu −Xd)3, (48)

w′2X ′ = a(1 − a)(1 − 2a)(wu − wd)2(Xu −Xd), (49)

w′X ′2 = a(1 − a)(1 − 2a)(wu − wd)(Xu −Xd)2. (50)

The following distinctive features of Eqs. (44, 45, 46, 47, 48, 49 and 50)
should be emphasized. All second-order and third-order moments vanish in
the limiting cases of a = 0 and of a = 1. The former case is merely the
case of no convection. The case a = 1 corresponds to a convective updraught
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that covers the entire horizontal area in question, e.g. the entire grid box of a
numerical model. Then, the updraught is no longer a sub-grid scale feature.
With a = 1 it becomes a grid scale feature that should be described by the
evolution equations for the resolved fields. Notice that this is not the case
for the T89 and similar mass–flux convection schemes. Due to their implicit
assumption that a � 1, those convection schemes remain active no matter
how large/small the horizontal size of a grid box of a numerical model as
compared to the size of an updraught. The lack of sensitivity to the grid size
becomes a serious problem as the resolution of numerical models is increased.

The r.h.s. of Eqs. (47, 48, 49 and 50) contain a factor 1 − 2a, i.e. the
third-order moments vanish as a = 1/2. The value of a = 1/2 corresponds to
zero skewness. It is readily shown using Eqs. (46) and (47) that the vertical-
velocity skewness is given by Sw = [a(1 − a)]−1/2 (1 − 2a). Notice that in the
framework of the simplest mass–flux approach considered here the magnitude
of the skewness Sx of a scalar field X is the same as the magnitude of Sw.
An extended two-scale mass–flux framework [83] enables Sx to be different
in magnitude from Sw. The fact that the third-order moments vanish if the
sub-grid scale velocity and scalar fields are not skewed is accounted for by the
expressions (19) and (20) discussed in Sect. 2.2. In this regard, Eqs. (19) and
(20) are nothing but the mass–flux Eqs. (49) and (50) recast in terms of the
ensemble–mean quantities used in the second-order closure approach.

The budget equations for the updraught and for the downdraught are (see
e.g. [52, 110])

∂

∂t
ρaXu +

∂

∂z
ρawuXu = EXd −DXu + ρaFxu, (51)

∂

∂t
ρ(1 − a)Xd +

∂

∂z
ρ(1 − a)wdXd = DXu − EXd + ρ(1 − a)Fxd, (52)

where E (D) is the lateral mass exchange rate from the sinking (rising) fluid
into the rising (sinking) fluid.

Setting Xu = Xd = 1 and Fxu = Fxd = 0 in Eqs. (51) and (52) yields

∂

∂t
ρa +

∂

∂z
ρawu = E −D, (53)

∂

∂t
ρ(1 − a) +

∂

∂z
ρ(1 − a)wd = D − E. (54)

Adding Eqs. (53) and (54) gives the continuity equation for the mean flow,

∂ρ

∂t
+

∂

∂z
ρ w = 0. (55)

Multiplying Eq. (54) by a and subtracting the result from Eq. (53) times
1 − a yields the equation that relates the fractional area of the updraught
with the mass–flux divergence and with the entrainment and detrainment
rates. It reads
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ρ

(
∂

∂t
+ w

∂

∂z

)
a = − ∂

∂z
ρa(1 − a)(wu − wd) + E −D

= −∂Mc

∂z
+ E −D. (56)

Notice an essential difference to Eq. (38) where the substantial derivative
of a is neglected. This neglect deprives the mass–flux convection schemes of
memory, making the vertical profile of mass flux to adjust instantaneously to
the current state of the atmosphere.

Adding Eqs. (51) and (52) and rearranging gives the equation for X in the
mass–flux approximation,

ρ

(
∂

∂t
+ w

∂

∂z

)
X = − ∂

∂z
Mc(Xu −Xd) + ρFx. (57)

A direct analogy to the ensemble–mean equation for mean scalar concentration
is immediately recognized. The first term on the r.h.s. of Eq. (57) is the mass–
flux analogue of the turbulent scalar flux divergence term in the ensemble–
mean equation.

3.3 Analogies Between the Mass–Flux and the Ensemble–Mean
Second-Moment Budgets

In this section, analogies between the mass–flux and the ensemble–mean bud-
get equations for the second-order moments are examined. The budgets of the
scalar variance, of the vertical-velocity variance and of the vertical scalar flux
are considered. It should be mentioned that these budget equations are not
explicitly carried by most of the mass–flux models developed to date. Their
consideration is, however, required in order to elucidate the physical meaning
of the various terms in the mass–flux model equations. An analysis of the
scalar–variance equations has been previously performed by de Roode et al.
[52] and Lappen and Randall [110]. They found, among other things, that
the sum of the lateral entrainment and detrainment rates in the mass–flux
equation corresponds to the inverse scalar–variance dissipation time scale in
the ensemble–mean equation. For the sake of clarity and completeness, the
treatment of the scalar–variance budget is repeated here. We then extend the
analysis of de Rode et al. and of Lappen and Randall to examine the bud-
gets of the vertical-velocity variance and of the vertical scalar flux, giving
particular attention to the role of the pressure–velocity and pressure–scalar
covariances. The two-delta-function framework is used for the analysis. The
use of the three-delta-function framework would make derivations more cum-
bersome, but would not affect the results in a principal way.

Scalar Variance

Subtracting Eq. (52) times a from Eq. (51) times 1− a, then multiplying the
result by Xu −Xd and rearranging yields the budget equation for the scalar

This copy belongs to 'acha04'



196 D.V. Mironov

variance in the mass–flux approximation. Omitting algebraic manipulations,
we obtain

1
2

(
∂

∂t
+ w

∂

∂z

)
a(1 − a)(Xu −Xd)2 =

− Mc

ρ
(Xu −Xd)

∂X

∂z
− 1

2ρ
∂

∂z
(1 − 2a)Mc(Xu −Xd)2

− E + D

2ρ
(Xu −Xd)2 + a(1 − a)(Xu −Xd)(Fxu − Fxd). (58)

This equation should be compared with the ensemble–mean budget equation
for the scalar variance,

1
2

(
∂

∂t
+ 〈w〉 ∂

∂z

)〈
X ′2〉 =

− 〈w′X ′〉 ∂ 〈X〉
∂z

− 1
2
∂

∂z

〈
w′X ′2〉− εx + 〈X ′F ′

x〉 .
(59)

The terms on the r.h.s. of Eq. (59) represent the mean–gradient produc-
tion/destruction, turbulent transport, the dissipation rate of the scalar vari-
ance, and the source term. Except for the source term, Eq. (59) is simply a
one-dimensional form of Eqs. (6) and (7).

A comparison shows that there is a direct analogy between the first,
the second and the fourth terms on the r.h.s. of the mass–flux and of the
ensemble–mean equations. The third term on the r.h.s. of the mass–flux
equation (58) is negative definite. It acts to decrease the scalar difference
between the updraught and the downdraught and can, by analogy with the
third term on the r.h.s. of the ensemble–mean equation (59), be interpreted as
the scalar–variance dissipation. Then, the quantity 2a(1−a)ρ/(E +D) in the
mass–flux equation corresponds to the scalar–variance dissipation time scale
τεx ≡

〈
X ′2〉 /εx in the ensemble–mean equation. It is worth noting [52, 110]

that the mass–flux “dissipation” term does not originate directly from the
molecular diffusion term in the scalar equation. This term originates from the
lateral exchange terms in the updraught–downdraught model and from their
parameterization through the entrainment–detrainment concept. The above
analogy is useful as it guides the way to set the rates of entrainment and de-
trainment in the mass-flux models. These quantities should be parameterised
so as to provide the most realistic scalar–variance dissipation rate. Further
requirements are imposed by the budgets of the vertical-velocity variance and
of the vertical scalar flux.

Vertical-Velocity Variance

The budget equations for the vertical velocity in the updraught and in the
downdraught are
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∂

∂t
ρawu +

∂

∂z
ρawuwu =

− a(∂p/∂z)u − ρag
θr − θu

θr
+ Ewd −Dwu, (60)

∂

∂t
ρ(1 − a)wd +

∂

∂z
ρ(1 − a)wdwd =

− (1 − a)(∂p/∂z)d − ρ(1 − a)g
θr − θd

θr
+ Dwu − Ewd, (61)

where p is the deviation of pressure (here not divided by density) from its
reference value in hydrostatic equilibrium. To simplify notation, θ is used in
the buoyancy terms instead of θv.

Adding Eqs. (60) and (61), using Eqs. (42), (55) and (56) and rearranging
gives the equation for w,

ρ

(
∂

∂t
+ w

∂

∂z

)
w = −∂p/∂z − ρg

θr − θ

θr
− ∂

∂z
Mc(wu − wd), (62)

where the third term on the r.h.s. is the mass–flux analogue of the Reynolds
stress divergence term in the ensemble–mean equation.

Equations (60), (61) and (62) for the vertical velocity are similar to
Eqs. (51), (52) and (57) for a scalar except that the equations for w con-
tain the pressure–gradient and the buoyancy terms, the first and the second
terms on the r.h.s. of Eqs. (60), (61) and (62), respectively.4 The updraught–
downdraught decomposition of the buoyancy term presents no difficulties.
The treatment of the pressure terms in the mass–flux framework is tricky and
requires special consideration.

First and foremost we emphasize that the updraught–downdraught de-
composition cannot be applied to the pressure itself. A straightforward de-
composition of p through Eq. (42) assumes a zero-order pressure jump across
the updraught–downdraught interface that would result in a spurious source
term in the equation for the vertical-velocity variance. A rigorous way to go is
to take the divergence of the momentum equation and to solve the resulting
Poisson equation for the fluctuating pressure in terms of the Green’s function
(see Sect. 2.2). The pressure field so obtained would be consistent with the
governing momentum and scalar equations.

We take a different approach. It is based on the observation that the
pressure terms are actually not explicitly considered at all in the mass–flux
models.5 For example, the updraught mass flux and the updraught fluxes of

4 In our formulation, there is no source term in the vertical momentum equation.
A more rigorous formulation, including momentum changes due to the presence
of hydrometeors (e.g. rain and snow), is given in [14].

5 Strictly speaking, the pressure terms are not present in the overwhelming ma-
jority of the mass–flux models developed to date. An exception is the mass–flux
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scalar quantities in the T89 scheme are computed on the basis of Eqs. (38)
and (39), where the scalar source terms account for the effects of condensa-
tion/evaporation and of precipitation fall-out. In this way no pressure effects
are explicitly accounted for. This is apparently because the mass continuity
within the mass–flux framework is assumed to be satisfied exactly from the
very outset. Even so, the pressure effects should be implicitly accounted for
in the mass–flux second-moment budgets, and it remains to be seen which
terms in the budgets serve this function. From the above line of reasoning,
the pressure terms in Eqs. (60), (61) and (62) should be set to zero so that
they do not appear in their explicit form in the mass–flux second-moment
budgets.

The equation for the vertical-velocity variance is derived in the same way
as the equation for the scalar variance. Subtracting Eq. (61) times a from
Eq. (60) times 1− a, then multiplying the result by wu −wd and rearranging,
we obtain the budget equation for the vertical-velocity variance in the mass–
flux approximation. It reads

1
2

(
∂

∂t
+ w

∂

∂z

)
a(1 − a)(wu − wd)2 = −Mc

ρ
(wu − wd)

∂w

∂z
+

g

θr

Mc

ρ
(θu − θd)

− 1
2ρ

∂

∂z
(1 − 2a)Mc(wu − wd)2 −

E + D

2ρ
(wu − wd)2. (63)

We have omitted the algebraic manipulations leading to Eq. (63) as they are
fairly straightforward. Equation (63) should be compared with the ensemble–
mean budget equation for the vertical-velocity variance [cf. Eq. (3)],

1
2

(
∂

∂t
+ 〈w〉 ∂

∂z

)〈
w′2〉 = −

〈
w′2〉 ∂ 〈w〉

∂z
+

g

θr
〈w′θ′〉

− 1
2
∂

∂z

〈
w′3〉− 1

ρ
〈w′∂p′/∂z〉 − εw, (64)

where the terms on the r.h.s. represent the mean–gradient production/destruc-
tion, the buoyancy production/destruction, turbulent transport, the vertical
velocity-pressure gradient covariance, and the dissipation rate of the vertical-
velocity variance.

Comparing Eqs. (63) and (64), we conclude that there is a direct analogy
between the first, the second and the third terms on the r.h.s. of the mass–
flux and the ensemble–mean equations. As to the last term on the r.h.s. of
Eq. (63), two interpretations can be suggested.

model ADHOC developed by Lappen and Randall [110–112]. However, the pa-
rameterization of the pressure terms in ADHOC is based on the ensemble–mean
second-order closure ideas. A new version of ADHOC, ADHOC2 [113], incorpo-
rates a representation of the pressure terms that is consistent with the mass–flux
framework [114]. Earlier attempts to account for the effect of perturbation pres-
sure on cumulus convection are reported in e.g. [90, 207, 211].
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We recall (see Sect. 2.1) that it is common practice within the ensemble–
mean second-order modelling framework to separate out the pressure trans-
port from the pressure gradient–velocity correlation [represented by the fourth
term on the r.h.s. of Eq. (64)] and to model pressure transport together with
the turbulent transport [the divergence of the third-order velocity correlation
represented by the third term on the r.h.s. of Eq. (64)]. The rest of the pressure
term (pressure redistribution) is modelled separately. It is usually decomposed
into the rapid part and the slow part, where the slow part is believed to return
turbulence towards isotropy (Sect. 2.2). Numerous studies have revealed the
importance of pressure terms in maintaining the second-moment budgets in
turbulent flows. Inadequate modelling of pressure terms, the pressure redis-
tribution in particular, most often results in inaccurate prediction of fluxes
and variances and consequently of the mean fields.

Assume that no account whatsoever is taken of the pressure effects in
the mass–flux framework. Then the last term on the r.h.s. of the mass–flux
equation (63) can be interpreted as the dissipation of the vertical-velocity
variance. This term acts to decrease the vertical-velocity difference between
the updraught and the downdraught and is negative definite. With no pres-
sure terms in the mass–flux budget, the transport of variance is solely due
to the third-order velocity correlation, and the pressure redistribution is not
accounted for. In convective flows, both pressure transport and pressure re-
distribution are known to be substantial. Their neglect results in a deficient
vertical-velocity variance budget.

Another possible interpretation of the last term on the r.h.s. of Eq. (63) can
be offered by assuming that, although the pressure term is not explicitly con-
sidered in the mass–flux budget, the pressure effects are implicitly accounted
for. Then, the last term on the r.h.s. of (63) should describe the combined effect
of the dissipation and of the pressure redistribution. In most convective flows,
the pressure redistribution acts to reduce the vertical-velocity variance. This
is explained from the following simple reasoning. The major source of energy
in convection is the buoyancy that directly feeds the vertical component of the
fluctuating velocity. The horizontal components of the fluctuating velocity are
not fed directly. They grow at the expense of the vertical velocity component.
By this means turbulence is driven toward isotropy. It is the traceless part
of the pressure gradient–velocity correlation, i.e. the pressure redistribution
term, that accounts for the inter-component energy exchange. Since both the
dissipation and the pressure redistribution tend to reduce the vertical-velocity
variance, it is reasonable to assume that the last term on the r.h.s. of Eq. (63)
accounts for their combined effect. A problem, however, arises if we attempt to
reconcile the last term in the vertical-velocity variance budget (63) with a sim-
ilar term in the scalar variance budget (58). The term with E+D in the scalar
variance budget describes the scalar variance dissipation, whereas a similar
term in the vertical-velocity variance budget describes the combined effect of
the dissipation and of the pressure redistribution. Putting it differently, the
same quantity 2a(1−a)ρ/(E+D) should characterize both the scalar-variance
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relaxation time scale due to dissipation and the velocity-variance relaxation
time scale due to both dissipation and pressure redistribution. Further diffi-
culties are encountered with the mass–flux budget equation for the vertical
scalar flux.

Scalar Flux

Subtracting Eq. (52) times a from Eq. (51) times 1− a and rearranging gives
the equation for the updraught–downdraught scalar difference Xu−Xd. Simi-
lar manipulations with Eq. (61) and (60) (recall that there are no explicit pres-
sure terms in the mass–flux equations) gives the equation for the updraught–
downdraught vertical-velocity difference wu −wd. Then, adding the equation
for Xu −Xd multiplied by wu − wd and the equation for wu − wd multiplied
by Xu −Xd and rearranging, we obtain the budget equation for the vertical
scalar flux in the mass–flux approximation. Omitting algebraic manipulations,
we obtain
(

∂

∂t
+ w

∂

∂z

)
a(1 − a)(wu − wd)(Xu −Xd) =

− Mc

ρ
(wu − wd)

∂X

∂z
− Mc

ρ
(Xu −Xd)

∂w

∂z

+ a(1 − a)
g

θr
(θu − θd)(Xu −Xd) −

1
ρ

∂

∂z
(1 − 2a)Mc (wu − wd) (Xu −Xd)

− E + D

ρ
(wu − wd)(Xu −Xd) + a(1 − a) (wu − wd) (Fxu − Fxd) . (65)

Equation (65) should be compared with the ensemble–mean budget equation
for the vertical scalar flux [cf. Eqs. (4) and (5)],

(
∂

∂t
+ 〈w〉 ∂

∂z

)
〈w′X ′〉 = −

〈
w′2〉 ∂ 〈X〉

∂z
− 〈w′X ′〉 ∂ 〈w〉

∂z

+
g

θr
〈θ′X ′〉 − ∂

∂z

〈
w′2X ′〉− 1

ρ
〈X ′∂p′/∂z〉 + 〈w′F ′

x〉 , (66)

where the terms on the r.h.s. represent the mean–gradient production/destruc-
tion (the first two terms on the r.h.s.), the buoyancy production/destruction,
turbulent transport, the pressure gradient–scalar covariance, and the source
term.

There is a direct analogy between all the terms in the mass–flux and the
ensemble–mean budgets, except the previous last terms. The previous last
term on the r.h.s. of the mass–flux equation (65) is purely destructive. It
acts to decrease the magnitude of the vertical scalar flux. Its counterpart
in the ensemble–mean equation (66) is, however, not the dissipation term,
but the pressure gradient–scalar covariance. In high Reynolds number flows
(with local isotropy at small scales, see Sect. 2.2), molecular dissipation of
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scalar fluxes is negligible, and it is the pressure gradient–scalar covariance
that destroys the scalar flux. The term with E + D in the mass–flux budget
(65) should, therefore, be interpreted as the term that describes the pressure
effects. This is in apparent contradiction with the interpretation of similar
terms in the scalar variance budget (58) and in the vertical-velocity variance
budget (63), where the terms with E + D describe the dissipation and the
combined effect of dissipation and pressure redistribution, respectively. Since
the scalar–variance dissipation, the velocity-variance dissipation, the pressure
redistribution and the pressure gradient–scalar covariance depend on the flow
variables in different ways, it is not easy to describe all the above effects
in terms of only two quantities, viz., the rates of lateral entrainment and
detrainment (cf. [51, 192]).

A positive outcome of the above analysis of the second-moment budgets
is that it suggests an extended formulation for the rates of turbulent entrain-
ment E and detrainment D. Recall that the traditional formulation sets E and
D proportional to the mass flux Mc through the constant fractional entrain-
ment and detrainment rates, ε and δ, respectively (their dimensions is m−1;
ε here should not be confused with the TKE dissipation rate). An extended
formulation is proposed in [148]. It reads

(E,D) = Mc

[
(ε, δ) + CBa2(1 − a)2

g

θr

θu − θd

(Mc/ρ)2

]

= Mc

[
(ε, δ) + CB

g

θr

θu − θd

(wu − wd)2

]
, (67)

where CB is a dimensionless constant.
The flow of arguments leading to Eq. (67) is as follows. First, the pressure

redistribution term in Eq. (64) and the pressure gradient–scalar covariance
term in Eq. (66) are parameterized through Eqs. (12) and (13), respectively,
where only the first and the third terms on the r.h.s. are retained. These
are return-to-isotropy and the buoyancy parts of the pressure terms that are
typically the dominant contributions in convective flows [144, 149]. Next, it
is assumed that all pressure relaxation (return-to-isotropy) time scales and
the dissipation time scales are proportional to each other and to the “master”
relaxation time scale τm = e−1/2lm, lm being the “master” length scale, and
that the vertical-velocity variance

〈
w′2〉 is proportional to the TKE e. Then,

the above analogies between the mass–flux and the ensemble–mean second-
moment budgets are exploited to infer that (E + D)/ρ ∝ a(1 − a)/τm =
a(1 − a)e1/2/lm. Finally, using the definition of the convective mass flux (45)
and recalling that (wu − wd) is the mass–flux analogue of

〈
w′2〉1/2 which

is assumed to scale on e, we obtain (E,D) = (ε, δ)Mc with (ε, δ) ∝ l−1
m .

Then, setting lm = const yields (ε, δ) = const. It is easy to verify that the
second term in brackets on the r.h.s. of Eq. (67) stems from the buoyancy
contributions to the pressure terms in the budgets of the vertical-velocity
variance and of the scalar flux.
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Notice that the traditional formulation for E and D, i.e. Eq. (67) without
the second term in brackets on the r.h.s., can be obtained from the above
reasoning if the simplest Rotta-type formulations (10) and (11) are used in-
stead of (12) and (13), respectively, to parameterize the pressure terms in the
second-moment budgets. It should also be mentioned that the above analysis
of the second-moment budgets does not allow to discriminate between E and
D. That is, it provides no guidance as to whether the buoyancy correction
term in Eq. (67) should be applied to E, to D, or to both E and D.

A formulation for the fractional entrainment rate ε that is very similar to
the second term in brackets on the r.h.s. of Eq. (67) was proposed by Gregory
[79] from different physical considerations.

4 Towards a Unified Description of Boundary-Layer
Turbulence and Shallow Convection

Having discussed the second-order closure and the mass–flux modelling frame-
works in some detail, it is appropriate to return to the question raised in the
Introduction. That is, whether regime-dependent parameterization schemes
should be developed to describe various types of fluctuating motions, or
some unification of different parameterization frameworks could be achieved.
Although a definitive answer to this question does not seem to exist at present,
there is a growing interest in unifying various parameterization ideas (see dis-
cussions in [12, 145, 187]). Considering the cumulus parameterization problem,
Arakawa [12] states:

It is rather obvious that for future climate models the scope of the
problem must be drastically expanded from “cumulus parameteriza-
tion” to “unified cloud parameterization” or even to “unified model
physics”. This is an extremely challenging task, both intellectually and
computationally, and the use of multiple approaches is crucial even for
a moderate success.

The tasks of developing a “unified cloud parameterization” and eventually a
“unified model physics” are very ambitious. Most NWP and climate models
will unlikely enjoy the use of such general parameterization frameworks for
some, perhaps many, years to come. However, a less ambitious task, namely,
a unified description of boundary-layer turbulence and shallow convection,
seems to be feasible. There are several ways to do so, but it is not a pri-
ory clear which way should be preferred. A number of attempts have been
made to develop a more unified turbulence-shallow convection parameteriza-
tion schemes. They can be classified, rather loosely, into three groups.

Extended mass–flux schemes are built around the top-hat updraught–
downdraught representation of fluctuating quantities. As discussed above,
the simplest top-hat mass–flux representation is equivalent to assuming a
two-delta-function PDF, where the motions can be either updraughts or
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downdraughts and the sum of the probabilities of the two admissible states
is one. Since the variety of motions is not exhausted by quasi-organized up-
draughts and downdraughts, the mass–flux equations are extended by adding
the “sub-plume scale” motions. These motions are thought to be small-scale
and chaotic, so that they can be parameterized on the basis of the second-
order closure ideas the simplest of which is the down-gradient approximation
of fluxes. Lappen and Randall [110–112] developed an extended mass–flux
scheme termed Assumed-Distribution Higher-Order Closure (ADHOC) that
parameterizes boundary-layer turbulence and shallow convection in a unified
framework. As the heart of the scheme is the two-delta-function mass–flux rep-
resentation, ADHOC is attractive for describing non-local convective trans-
port. Missing components, namely, parameterizations of the subplume scale
fluxes, of the pressure terms, and, to some extent, of the dissipation terms, are
borrowed from the ensemble–mean second-order modelling framework. An up-
dated version of ADHOC, ADHOC2 [113, 114], includes parameterizations of
pressure terms and of momentum fluxes consistent with the mass–flux frame-
work (more specifically, with the assumed spatial distribution based on the
two types of idealized coherent structures – plumes and rolls).

Parameterization schemes where the mass–flux closure ideas and the
ensemble–mean second-order closure ideas have roughly equal standing can
be labelled as hybrid schemes. These are exemplified by the Eddy-Diffusivity/
Mass–Flux (EDMF) scheme proposed by Soares et al. [180] based on ear-
lier work of Siebesma and Teixeira [176]. In the framework of the EDMF
scheme, the vertical flux of a fluctuating quantity f is represented as a
sum of two contributions [175], one is assumed to stem from the small-scale
chaotic eddies and is described with the eddy-diffusivity down-gradient for-
mulation, and the other is assumed to stem from the convective-layer-scale
quasi-organized plumes and is described with the mass–flux formulation. That
is, 〈w′f ′〉 = −Kf∂ 〈f〉 /∂z+(Mu/ρ)(fu−〈f〉), where Mu is the convective up-
draught mass flux, fu is the value of f in the updraught, and 〈f〉 is the value
of f averaged over a grid box of a host numerical model. The eddy diffusivity
Kf is estimated on the basis of the TKE, for which a prognostic equation is
carried, and of a diagnostic formulation for the turbulence length scale [180].
A simple entraining parcel model is used to determine Mu and fu. The EDMF
scheme operates throughout the convective layer, from the (near vicinity of
the) surface up to the top of shallow cumuli, and does not require switching
between turbulence and convection schemes (until deep convection is triggered
that still requires a separate parameterization scheme). The scheme is formu-
lated in terms of moist quasi-conservative variables, the liquid water potential
temperature θl and the total water specific humidity qt, and an SGS statisti-
cal cloud scheme (Sect. 2.5) is used to predict fractional cloud cover and the
amount of cloud condensate.

Some features of the EDMF scheme deserve critical consideration. A parcel
model used to determine Mu and fu assumes that the updraughts fractional
area coverage au is small as compared to the horizontal grid size of a host
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atmospheric model. Then, the mass–flux component of the EDMF scheme
inherits all shortcomings of the “traditional” mass–flux schemes (Sect. 3).
In particular, there is no resolution dependency – the mass–flux component
remains active irrespective of the ratio of the horizontal size of numerical
grid to the size of the updraught. Furthermore, there is no dependency on
the skewness of fluctuating fields – the skewness is always large by virtue
of a small au. This is an important difference to the ADHOC scheme which
guarantees that au approaches 1/2 as skewness approaches zero.

Variances
〈
f ′2〉 of scalar quantities in the EDMF scheme are diagnosed on

the basis of a truncated scalar–variance equation, see Eqs. (6) and (7), where
only the dissipation term and the mean-gradient term are retained, that is
εf = −〈w′f ′〉 ∂ 〈f〉 /∂z. Then, parameterizing the dissipation rate through
the dissipation time scale, εf =

〈
f ′2〉 /τf , and using the above EDMF formu-

lation for the flux 〈w′f ′〉, yields the expression for
〈
f ′2〉. Notice that using

the mass–flux formulation for the flux and at the same time neglecting the
third-order transport term in the scalar–variance equation is not quite consis-
tent. Numerous analyses of observational and LES data (e.g. [118, 147, 150])
indicate the importance of the turbulent transport term − 1

2∂
〈
w′f ′2〉 /∂z in

maintaining the scalar-variance budget in the well-mixed CBL core, where the
mean-gradient term is small. Furthermore, as discussed in Sects. 2.2 and 3.2, it
is the third-order transport term in the scalar-variance equation that accounts
for the non-local transport by skewed convective turbulence. Neglecting this
term is inconsistent with the assumption of large skewness (small au). No-
tice also that the formulation for

〈
f ′2〉 neglecting the third-order transport

term should not allow for the counter-gradient scalar flux (when 〈w′f ′〉 and
∂ 〈f〉 /∂z have the same sign) that is known to often occur in convective flows.
A counter-gradient scalar flux would lead to totally spurious negative values
of the scalar–variance dissipation and hence of the scalar variance. In the
EDMF scheme of Soares et al. [180], this situation is avoided by applying a
clipping operation – the mass–flux contribution to the scalar–variance is set
to zero whenever it becomes negative. As discussed in Sect. 2.5, variances of
θl and of qt are the key input parameters for statistical parameterizations of
fractional cloudiness. They should be accurately predicted. This may not be
achieved without an accurate treatment of the third-order transport terms in
the scalar–variance equations.

Notwithstanding their shortcomings, the EDMF-like hybrid schemes are
attractive for they are simple and computationally efficient. They enjoy grow-
ing popularity in atmospheric modelling (e.g. [11, 103]).

Non-local second-order closure schemes represent one more alternative to
describe boundary-layer turbulence and shallow convection in a unified frame-
work. In pursuing this aim, a number of schemes based on the ensemble–mean
equations for the statistical moments of fluctuating fields have been devel-
oped. These range from low-order turbulence closures, where the only prog-
nostic equation is the TKE equation (e.g. [19, 21]), to high-order closures,
where transport equations are carried for all second-order and third-order
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moments involved (e.g. [29–31]). These schemes proved to do a fair job of
describing turbulence and shallow convection. Using moist quasi-conservative
variables and well-tuned statistical parameterizations of fractional cloudiness,
these schemes appeared to be capable of describing cumuliform and stratiform
boundary-layer clouds in a unified framework.

Turbulence closure schemes based on the ensemble–mean equations are
often blamed for their inability to describe non-local transport due to quasi-
organized convective motions. Both heavily truncated second-order closures
and sophisticated high-order closures suffer from this drawback. The in-
corporation of additional transport equations for third-order and possibly
higher-order moments makes the schemes very complex and computationally
expensive. The gain in terms of accuracy of their performance is, however, not
as tangible as one would expect in the hope that making crude assumptions
on the high-order moments would still yield an accurate prediction of low-
order moments of interest, viz., of fluxes and variances and of the mean fields.
What is most likely to be at fault is the assumption, which is either explicit or
implicit in most turbulence closures based on the ensemble–mean equations,
that the PDF of fluctuating fields is approximately Gaussian. For example, a
third-order closure that makes use of the Millionshchikov hypothesis (quasi-
Gaussian approximation, Sect. 2.2) to parameterise fourth-order moments is
fairly sophisticated, and yet it fails to properly account for non-local nature
of convective turbulence.

As the analysis in Sects. 2.2 and 3.2 suggests, the inability of traditional
ensemble–mean closures to describe non-local convective transport may well
be apparent rather than real. In the second-order modelling framework, one of
the key points is the parameterization of the third-order transport moments
in the second-moment equations. It is these terms that are largely respon-
sible for non-local transport properties of convective motions. Recall that
the third-order terms are usually parameterized through the simple down-
gradient diffusive approximations, or through the use of their own transport
equations where the fourth-order moments are taken to be Gaussian. In order
to account for non-local transport properties of convection, additional terms
should be added to the formulations for the third-order moments, namely, the
terms dependent on the skewness of fluctuating fields. Such additional terms
for the third-order moments in the temperature–flux equation and in the
temperature–variance equation are given by Eqs. (19) and (20) respectively.
It must be stressed that Eqs. (19) and (20) are simply the mass–flux Eqs. (49)
and (50) recast in terms of the ensemble–mean quantities. Since the mass–flux
formulations are advective rather than diffusive in character and are intrinsi-
cally non-local [110], their ensemble–mean counterparts should also be able to
properly account for non-local convective transport. The skewness of fluctu-
ating fields (may be different for different quantities, e.g. [83, 146]) should be
determined from transport equations for the third-order moments, where the
fourth-order moments are represented through skewness-dependent formula-
tions (21, 22, 23 and 24) (the generalized Millionshchikov hypothesis) which
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again are consistent with the mass–flux formulations in the non-Gaussian
limit. In some situations, simplified algebraic formulations for skewness may
appear to be sufficient [19] (see also the chapter “Turbulence in Astrophysical
and Geophysical Flows” of this volume).

Notice that extended non-local second-order closure schemes with skew-
ness-dependent formulations for the third-order transport terms are likely to
be more stable numerically as they would not violate realisability in case of
large skewness. They are also more consistent with statistical parameteriza-
tions of fractional cloudiness many of which utilize a skewed PDF to describe
cumuliform clouds (see Sect. 2.5).

The above classification of unified turbulence-shallow convection schemes
is rather arbitrary. For example, the “assumed PDF scheme” of Golaz et al.
[70, 71] can be viewed as an extension of the ADHOC scheme of Lappen and
Randall, where a two-delta-function PDF is replaced with a two-Gaussian-
function PDF. Alternatively, it can be viewed as an extended ensemble–mean
high-order closure based on a rather flexible two-Gaussian PDF. Generally
speaking, any of the three approaches outlined above should yield the same
result if parameterizations are formulated and implemented clearly and con-
sistently. Putting it differently, it should not matter much which conceptual
framework is used as a basis, i.e. whether a unified scheme is built within the
mass–flux modelling framework and the missing components (e.g. parameter-
ization of the sub-plume scale fluxes) are borrowed from the ensemble–mean
framework, or whether it is built within the ensemble–mean modelling frame-
work and the missing components (e.g. parameterization of the third-order
transport) are borrowed from the mass–flux framework. However, a clear and
consistent formulation requires certain level of complexity, and that level is
likely to be higher than most NWP and climate models can afford. In view of
stringent requirements of computational economy, simpler schemes are called
for that are based on a (heavily) truncated set of equations for statistical mo-
ments of fluctuating fields. Mass–flux schemes (or hybrid schemes) are likely
to be preferred for some years to come in situations where non-local transport
properties of fluctuating fields is a major concern. In a long-term perspec-
tive, however, unified schemes built around the ensemble–mean second-order
closures seem to be more appealing. The following arguments in favour of
this viewpoint can be adduced. Due to a rapid development of computers,
the resolution of numerical models of the atmosphere is continuously refined.
As the mesh size becomes small, increasingly more quasi-organized flow struc-
tures, that are chiefly responsible for non-local transport, are resolved. Then,
the focus of SGS parameterizations is shifted towards motions at smaller
scales, which are (presumably) more chaotic, and towards other issues, such
as the anisotropy of turbulence near the surface and in stably stratified re-
gions of the flow and an accurate parameterization of pressure redistribution
and pressure transport. The second-order closures are attractive for describing
these very features.
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Now we outline the next step that, in the author’s opinion, should be
made to go beyond the level of one-equation closure schemes (the level 2.5
schemes in the Mellor–Yamada nomenclature) that have been and still are
the draft horses of atmospheric turbulence modelling in NWP, climate stud-
ies, and related applications. Closure schemes that presently carry only one
prognostic equation, viz., the TKE equation, should be extended to incorpo-
rate prognostic equations for the scalar variances. This suggestion is almost
trivial as may be inferred from the following arguments. The key to successful
modelling of any turbulent flow is an adequate description of the flow energy.
In neutrally stratified flows, the kinetic energy of turbulence is a major (or
the only) concern. This explains why the one-equation closure schemes have
been used to advantage in simulating neutral flows. The situation is essen-
tially different in flows where the density (buoyancy) stratification is different
from neutral. In such flows, the turbulence potential energy (TPE) plays an
important part along with the TKE. The TKE is spent to work against the
gravity and is converted into the TPE in stably stratified flows. In convective
flows, the TKE grows at the expense of the TPE. The rate of TKE↔TPE
conversion is represented by the buoyancy–flux term βi 〈u′

iθ
′
v〉 that enters the

TKE equation (9) as a source (sink) term. Since the atmospheric flows are vir-
tually never hydrostatically neutral, and the TKE and the TPE in stratified
flows are equally important, it is difficult to adduce plausible arguments in
favour of one form of energy over the other. Both energies should be treated
in a similar way. In the dry atmospheric CBL, the potential temperature is
the only thermodynamic variable that affects the distribution of buoyancy.
The TPE is proportional to the temperature variance [172] that should be de-
termined from Eq. (6), where the representation of the third-order transport
term should account for the non-local character of skewed convective motions.
In case of moist atmosphere, the TPE depends on the variances

〈
θ′2l
〉

and
〈
q′2t
〉

of moist quasi-conservative variables and on their correlation 〈θ′lq′t〉. A para-
meterisation of fractional cloudiness is additionally required to determine the
buoyancy terms.

Closure schemes for atmospheric applications, that carry transport equa-
tions for both the TKE and for the scalar variances, have been developed by
e.g. Kenjereš and Hanjalić [100] and Nakanishi and Niino [153]. Curiously, it
was noticed already by Mellor and Yamada in their classical 1974 paper [141]
that the scheme (level 3 in their nomenclature) that carries two prognostic
equations, for the TKE and for the potential–temperature variance, is partic-
ularly attractive. Three closure schemes of various complexity were applied to
simulate a PBL subject to a diurnally varying surface heat flux. The level 3
scheme proved to outperform an algebraic closure scheme. Little was gained
if the most complex of the three schemes, that carries transport equations for
all second-order moments involved, was used. Thus, the level 3 scheme was
found to be the best compromise between physical realism and computational
economy. The message does not seem to have been got by the geophysical
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turbulence-modelling community. Most users of the Mellor–Yamada closures
gave preference to the level 2.5 scheme in spite of its obvious shortcomings.

In closing this section, yet another way of representing convection and tur-
bulence in numerical models of the atmosphere should be mentioned. Two- or
even three-dimensional models capable of resolving cloud scales are embedded
into grid-boxes of coarse-resolution atmospheric models. This way to tackle
the sub-grid scale parameterization problem was unthinkable a decade ago,
but a drastically increased computer power has made it possible nowadays.
Consideration of this innovative approach called “cloud-resolving convective
parameterization” [74, 75] or “super-parameterization” [161] is beyond the
scope of the present chapter.

5 Conclusions

Modelling (parameterizing) turbulence and shallow convection in the lower
troposphere as it is practised in NWP and related applications is discussed.
Although turbulence and convection are both unresolved, sub-grid scale mo-
tions and a distinction between the two is quite ambiguous, different concepts
are typically used to parameterize them in numerical models of the atmo-
sphere. The ensemble–mean second-order closure approach is taken to describe
turbulence, deemed to represent quasi-random small-scale motions, whereas
the mass–flux closure approach is taken to describe convection, deemed to
represent quasi-organized motions of larger scales.

The ensemble–mean second-order closure framework is outlined with the
emphasis on the parameterization of the pressure redistribution and of the
third-order transport. A rather lengthy treatment appeared to be necessary
to demonstrate how simplified turbulence parameterization schemes are ob-
tained and what is lost on the way. As we have seen, only a small fraction of
what is available nowadays is actually used in applications. This “keep it sim-
ple” strategy is justified in view of stringent requirements of computational
economy that parameterization schemes for NWP, climate modelling and sim-
ilar applications should necessarily meet. Nonetheless, incorporating more of
the essential physics into the existing turbulence schemes is highly desirable.

The mass–flux closure framework is outlined with reference to its simpli-
fying assumptions and to its limits of applicability. The analogies between
the second-moment budgets derived in the mass–flux and in the ensemble-
mean second-order modelling frameworks are analysed. The analysis shows
that the two modelling frameworks have very much in common and that the
parameterization ideas developed in one framework can be translated into the
language of the other. Further outcome of the analysis is an extended formu-
lation for the rates of turbulent entrainment and detrainment, Eq. (67), the
key parameters in the mass–flux convection schemes.

As the artificial separation of processes and scales in numerical mod-
els of the atmosphere causes many conceptual and practical problems [12]
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(the turbulence–convection separation being an example), there is a grow-
ing need for a more consistent description of turbulence and shallow non-
precipitating convection within a unified parameterization framework. Several
alternative ways to achieve such a description are considered and their pros
and cons are discussed. A non-local second-order closure scheme, that carries
prognostic equations for both kinetic energy and potential energy of sub-grid
scale fluctuating motions and incorporates skewness-dependent formulations
for the third-order moments, seems to be an attractive alternative.

In a long-term perspective, deep precipitating convection should also be
incorporated into a unified turbulence–convection scheme. This task is very
difficult and intellectually challenging, and quick success is by no means guar-
anteed. Except for very high-resolution atmospheric models capable of re-
solving deep convective motions, separate parameterization schemes for deep
precipitating convection will be used over some, perhaps many, years to come.
Then, these schemes should be adjusted to adequately respond to an increas-
ing resolution of host atmospheric models and to work in harmony with im-
proved turbulence-shallow convection schemes. To this end, some restrictive
assumptions of deep convection schemes may need to be relaxed, e.g. the as-
sumptions of steady-state and of small fractional area coverage of convective
updraughts. Steps forward in this direction are described in [69, 158].
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88. Högström, U.: Non-dimensional wind and temperature profiles in the atmo-
spheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42, 55–78
(1988) 183
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1 Introduction

Turbulence remains one of the last unresolved problems of classical physics.
Turbulent flows in electrically conducting media represent an important aspect
of this problem, because of their general importance for the evolution of astro-
and geophysical plasmas [10, 87]. Turbulence in plasmas, i.e. ionized gases, also
offers valuable insights into the not yet fully understood nonlinear dynamics of
spectral cascades and structure formation due to the presence or generation
of magnetic fields (see, e.g. [73, 95, 96]). These allow additional diagnostic
access to the underlying nonlinear interaction of turbulent fluctuations.

In experimental devices for thermonuclear fusion the magnetically confined
hot plasma is basically collisionless and requires kinetic treatment. Exceptions
are the thin and comparably cool edge layer near the vessel boundaries [94]
and plasmas in reversed-field pinch configurations [71]. In contrast turbulent
plasmas in or beyond the earth often allow a fluid description due to the
immense size of the dynamical regions and associated time-scales of interest
compared to the effective mean-free-path and the frequencies related to the
plasma particles [3].

Since plasma turbulence is a fully nonlinear problem comprising the dy-
namics of many interacting degrees of freedom, the relatively simple single
fluid description of magnetohydrodynamics (MHD) represents a sensible start-
ing point for theoretical and numerical investigations. While it is often desir-
able to include additional and more complex physical components in the model
of the turbulent medium, we will refrain from doing so in this chapter not to
obfuscate the inherent properties of MHD turbulence. The interest in these
properties lies mainly in their potential universality, that is to say the inherent
properties of turbulence might well be important for the dynamics of systems
involving additional physics, e.g. gravity, radiation, rotation, or convection.

For additional simplicity of the MHD description, the mass density of
the magnetofluid is assumed to be constant in time and spatially uniform,
ρ = ρ0 = 1. In addition relativistic effects are neglected and fluid velocities are
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assumed to be much smaller than the magnetosonic speeds in the plasma. The
flow can therefore be regarded as incompressible, dρ/dt = 0 (cf. for example,
[92]). This condition though rarely fulfilled in realistic plasma flows yields
another simplification of the problem by reducing the continuity equation,

d
dt

ρ + ρ∇ · v = 0

to a simple solenoidality constraint on the velocity field, ∇ · v = 0.
The dimensionless incompressible MHD equations governing the motions

of an electrically conducting fluid on large space- and timescales on which fluc-
tuations of the electrical charge density are levelled out quasi-instantaneously
and the kinetic nature of the medium becomes invisible then are

∂tv = −v · ∇v −∇p− b × (∇× b) + μ̂Δv , (1)
∂tb = ∇× (v × b) + η̂Δb , (2)

∇ · v = ∇ · b = 0 . (3)

The magnetic field, b, is given in Alfvén-speed units with the Alfvén speed
defined as vA = B/

√
μ0ρ, the vacuum permeability μ0 being set to unity

and the mass density ρ = ρ0 = 1. In addition the dimensionless dissipation
coefficients μ̂ and η̂ are introduced.

The nondimensional diffusivities are related to the kinematic viscosity, μ,
and magnetic diffusivity, η, by the relations μ̂ = μ/(L0V0) = Re−1 and η̂ =
η/L0V0 = Rm−1 where L0 and V0 are a characteristic length and velocity of
the configuration considered. Additionally, μ̂−1 and η̂−1 correspond formally
to the kinetic Reynolds number, Re and the magnetic Reynolds number, Rm,
which roughly quantify the ratio of nonlinear to dissipative terms in (1) and
(2). The magnetic Prandtl number, Prm = Rm/Re = μ/η, is another significant
parameter of incompressible MHD and, for example, of importance in studies
of magnetic field generation by MHD turbulence (turbulent dynamo effect, see
e.g. [9, 17]). Throughout this chapter Prm is set to unity to achieve a formally
symmetric configuration with regard to v and b.

Smoothly evolving observables in time and space can be extracted from
turbulent flows by statistical treatment of its quasi-stochastic fluctuations. A
straightforward approach is to use statistical averages taken at one specific
point in time or space [65] which however does not suffice to fully characterize
the quadratic nonlinearities underlying turbulent dynamics. Two-point statis-
tics which involve averaged field differences between two points, r and r′, [66]
are more appropriate for the problem since they are linked to experimentally
measurable scale-dependent quantities like the energy spectrum or the spatial
structure of the fluctuations [79]. In fact the useful concept of fluctuations
on a spatial scale � = |r − r′| naturally follows from two-point statistics (see
below).

The ensemble average of a two-point observable, 〈f(r, r′)〉, can be defined
as the mean of this quantity over a large number of systems which have devel-
oped over the same period of time starting from a macroscopically identical
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state. For practical purposes it is however more convenient to use spatial or
temporal averages in one realization with sufficient spatial or temporal ex-
tent, V and T respectively, instead of the unwieldy and sometimes impossible
preparation of a large ensemble suitable for averaging. For convergence to-
wards ensemble averages when V , T → ∞ quasi-ergodicity [6] is presupposed,
i.e. the trajectory of the system in phase-space comes arbitrarily close to any
theoretically reachable state of this configuration. Quasi-ergodicity is a plau-
sible assumption for turbulent systems but has not been proven rigorously,
yet.

When investigating the intrinsic properties of turbulence it is common to
regard idealized systems neglecting the influence of a particular geometry,
boundaries as well as other large-scale constraints on the flow. This approach
is motivated by the observation that small-scale fluctuations of turbulence
appear to be independent of the specific setup on large scales. The accom-
panying algebraic simplification of statistical turbulence theory is of course
gratefully accepted.

A general and widely applied assumption is statistical homogeneity, i.e.
invariance of statistical quantities under translation in space or time, e.g.
〈f(r, r′)〉 = 〈f(r − r′)〉. Sometimes the more restrictive symmetry of sta-
tistical isotropy, which includes homogeneity, is chosen expressing additional
invariance under rotation, 〈f(r, r′)〉 = 〈f(|r − r′|)〉 = 〈f(�)〉.

The latter assumptions simplify theoretical considerations though in real
turbulence which is usually driven by a large-scale gradient, instabilities or
other energy-sustaining processes statistical homogeneity or isotropy are only
found in a limited range of scales if at all. Nevertheless, due to their utility,
theory is usually dealing with idealized turbulence having the aforementioned
statistical symmetries. Consequently, their validity in direct numerical simu-
lations of turbulence has to be checked before comparison of numerical results
with theory can be undertaken.

2 Macroscopic Properties

The Reynolds numbers parameterize a laminar flow a priori since normally L0

and V0 of such a configuration can be unambiguously identified. In contrast
statistically homogeneous turbulence only permits an a posteriori estimate
of L0 and V0 and consequently the associated Reynolds numbers are merely
diagnostic in character.

The definitions of Re and Rm can be expressed with the help of macroscopic
quantities characteristic of the flow, the total energy per unit mass, E =
EK +EM = 1

2

∫
V

dV (v2 + b2), and the energy dissipation rate, ε = −Ė. These
allow, using dimensional analysis, to estimate a characteristic length scale
L0 = E3/2/ε and large-scale velocity V0 =

(
EK
)1/2 giving
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Re �
(
EK
)1/2

E3/2

με
and Rm �

(
EK
)1/2

E3/2

ηε
.

2.1 Ideal Invariants

Special quantities, in 3D hydrodynamics total energy E = 1
2

∫
V

dV v2 and
kinetic helicity HK = 1

2

∫
V

dV v · ω where ω = ∇ × v is the vorticity, in
3D magnetohydrodynamics total energy E = 1

2

∫
V

dV (v2 + b2), cross helicity,
HC = 1

2

∫
V

dV v · b and magnetic helicity, HM = 1
2

∫
V

dV b · a, defined with
the dimensionless magnetic vector potential a, b = ∇× a, are important for
characterizing the macroscopic state of a turbulent flow.

The utility of these variables stems from their conservation in closed ideal
systems, a property that even survives in representations using finite sets of
Fourier modes. In MHD this ruggedness of the ideal invariants E, HC and HM

is caused by their detailed conservation in the nonlinear interaction of modes
associated with three arbitrary wave-vectors k, p and q forming a triangle,
k = p + q (see, for example, [56]). Triad interactions are a mathematical
property of convolution integrals which are Fourier-space representations of
the quadratic nonlinearities occurring in (1) and (2) [58]. Detailed conservation
also is a prerequisite for turbulent cascade processes. Consequently, only ideal
invariants are usually subject to this special kind of spectral transport that
will be discussed later in this chapter.

Cross helicity and magnetic helicity of the turbulent fields quantify topo-
logical properties that are conserved if μ = η = 0. Ideal invariance of HC

expresses the fact that the mean orientation of velocity and magnetic field
cannot arbitrarily be changed due to the magnetic field being frozen into the
fluid. A change of magnetic helicity, HM, which measures the linkage and
‘knottedness’ of magnetic field lines [64] is suppressed by the lack of magnetic
reconnection under ideal conditions. The kinetic helicity, HK, which owes its
conservation in ideal hydrodynamics to Kelvin’s circulation theorem [2] has
some importance in the context of dynamo theory [9] but will not play a role
in this chapter.

2.2 Selective Decay

Turbulence occurs only in nonideal, dissipative systems like Eqs. (1, 2 and 3).
If the turbulent flow is not sustained by some driving mechanism constantly
replacing energy lost through dissipation the ideal invariants decay. Their
decay rates can be straightforwardly calculated using the MHD equations as

Ė = −ε = −
∫

V

dV
(
μω2 + ηj2

)
, (4)

ḢC = − εC = −μ + η

2

∫

V

dV (ω · j) , (5)
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ḢM = − εM = −η

∫

V

dV (j · b) , (6)

with the electric current density j = ∇× b.
Since the Fourier-transformed integrands in (4), (5) and (6) are of differ-

ent order in the spatial wavenumber k with (5) and (6) not being positive-
definite, the associated decay rates differ systematically with ε 
 εC � εM.
Direct numerical simulations (DNS) confirm this behaviour known as selective
decay [91].

Maximum cross and magnetic helicity states correspond to minimal-energy
configurations. For maximal HC there is v ‖ b everywhere and the interac-
tion of magnetic and velocity field becomes minimal while a maximum of HM

corresponds to a force-free magnetic field topology with b ‖ j. The devel-
opment of decaying MHD turbulence is therefore determined by the initial
values of the ideal invariants. For example, if the normalized cross helicity,
σ = 2HC/

√
EKEM, which is also called alignment, stays within a few percent

it will continue to fluctuate around zero while σ � 20% and above gives rise
to a dynamic alignment process [24, 39] increasing σ and eventually switching
off turbulent dynamics.

2.3 Energy Decay

While the energy of a freely decaying laminar flow diminishes exponentially,
E(t) ∼ exp(−2μ̂k2t), the decay of turbulence is known to exhibit a period of
self-similar power-law behaviour E(t) ∼ t−β with constant exponent β. For
the hydrodynamic case, β = 10/7 was derived by Kolmogorov [47] based on
the questionable invariance of the Loitsianskii integral ∼

∫
drr4〈v(x+r)v(x)〉

(see, e.g. [44]) which is used to estimate the integral length scale of the flow
�0. A different approach [57] which utilizes a statistical closure theory known
as eddy-damped quasi-normal Markovian approximation (EDQNM) [70] in
combination with the postulated ‘permanence of the big eddies’ (invariance of
the low wavenumber part of the energy spectrum (see (12)), Ek ∼ ks �const)
gives the expression β = 2(s + 1)/(s + 3) with 1 � s < 4.

For s = 4 the latter expression would coincide with the value obtained by
Kolmogorov, but the theoretical limit s < 4 excludes this value. Experiments
(cf. for example [23, 44, 86]), do not give a clear-cut picture with β ranging
between 1 and 2. Therefore neither of the phenomenologies can be verified at
present.

The temporal evolution of total energy in three-dimensional decaying
MHD turbulence has been subject to various numerical investigations (see,
e.g. [11, 60, 90]. The interest in this problem is mainly driven by an evi-
dent discrepancy between the observed life times of molecular clouds in the
interstellar medium and the free-fall time associated with their gravitational
collapse, see, e.g. [10]. MHD turbulence was suggested to be a process delaying
gravitational collapse by acting as an effective outward-directed pressure.
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Fig. 1. Left : energy evolution for varying magnetic helicity HM = 0, 0.15, 0.38,
0.7, 0.92, 1[HM

max] (bottom to top) in DNS of decaying MHD turbulence. Right : cor-
responding values of β as estimated from logarithmic derivatives of E(t)

As can be inferred from Fig. 1, the decay exponent in direct numerical
simulations strongly depends on the level of magnetic helicity HM being the
lower the larger |HM|, i.e. the higher the topological complexity of b. A quasi-
linear tuning of β can be achieved via the alignment σ. Since, however, an
increase of σ simply depletes the nonlinear coupling of velocity and magnetic
field (cf. Eq. (2)) the influence of this quantity on energy decay is rather
uninteresting.

A model of energy decay in MHD turbulence that follows essentially the
argumentation of Kolmogorov’s hydrodynamic approach assumes invariance
of an MHD-generalization of the Loitsianskii integral with Elsässer variables,
z± = v ± b [27], in the involved correlation function [33]. By additionally
postulating nonlinear energy-transfer driven by mutual Alfvén-wave collisions
as in the Iroshnikov–Kraichnan picture of MHD turbulence [46, 52] (cf. Sect.
3.2), β = 5/6 is obtained. However, an inconsistency in the derivation [12]
puts the result in question.

Finite magnetic helicity is characteristic of many astrophysical plasmas,
since plasma turbulence usually occurs in rotating systems with mean gradi-
ents of temperature, so that the combined action of Coriolis and buoyancy
forces naturally leads to twisted field lines. For finite HM and if the turbu-
lence is not continuously driven, selective decay, i.e. a much slower decay of
HM compared to that of the energy, will dominate the development of energy.

The basic framework utilizing this idea has been developed for the decay
of enstrophy, Ω = 1

2

∫
ω2dS with dS denoting a surface element, in 2D hy-

drodynamic turbulence [1] and was later applied to MHD turbulence [41, 91]
(and references therein). For high Reynolds number HM can be considered
invariant during energy decay. This property which is more robust than the
questionable invariance of the Loitsianskii integral allows the construction of
a phenomenological model for the energy decay.
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Defining the characteristic length scale �0 by EM�0 = HM and applying
the relations HM =const, �0 ∼ E3/2/ε and E ∼ EM one finds

dE
dt

∼ E5/2

HM
(7)

which has the asymptotic solution E ∼ t−2/3 [7].
DNS reveal significant deviations from β = 2/3 (see Fig. 1), which can be

attributed to a departure from self-similarity in the energy decay. In particular
the ratio Γ = EK/EM is not constant as in 2D MHD turbulence simulations
[14] and as implicitly assumed in the derivation of (7), but decreases at a rate
comparable to that of the energy, Γ � 0.1 × E/HM [11].

To account explicitly for the variation of Γ , it is assumed that the most
important nonlinearities in the MHD equations arise from the advective terms,
giving

−dE
dt

= ε ∼ v · ∇E ∼ (EK)1/2 E

�0
.

Substitution of the integral scale �0 introduced above gives

E5/2

εHM

Γ 1/2

(1 + Γ )3/2
= const. (8)

which together with Γ ∼ E/HM describes the energy decay.
In the limit Γ � 1, which is the asymptotic state decaying MHD turbu-

lence, one finds the similarity solution E ∼ t−1/2. For larger Γ the decay is
somewhat steeper, flattening to t−1/2 as Γ becomes small [12].

The approximate constancy of expression (8) over the period of fully de-
veloped turbulence (t > 3) shown in Fig. 2, which depicts data gained with
DNS of varying resolution (5123, 2563) and at different values of HM [11],
validates the associated simple phenomenology. The verification by use of a
differential relation like (2) is easier and more accurate than extracting a
power-law exponent from the curve E(t) since the decay law has the general
form E(t) ∼ (t − t0)−β . The function ∼ t−β appears only asymptotically
for t 
 t0 where the offset t0 is undetermined and can be of the order of a
large-eddy turnover time.

In the case of vanishing HM, one finds a different decay law [12],

dE
dt

∼ E2, (9)

which corresponds to the solution E ∼ t−1 in agreement with DNS of three-
dimensional compressible and incompressible MHD turbulence [11, 60, 90].
The decay is similar to the one observed in two-dimensional MHD turbulence
[14], though, contrary to the latter, there is no obvious selective decay process
for HM = 0 in the 3D case.
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Fig. 2. Relation (8) for various DNS runs of decaying MHD turbulence with different
values of HM (cf. [11])

Because for HM = 0 there is no clearly conserved quantity, it is difficult
to interpret the decay law (9), a situation familiar from hydrodynamic turbu-
lence. If the decay depends sensitively on the small-k spectrum, the t−1-law
may not be universal. The fact that the energy decay is more rapid for HM � 0
than for finite HM, is plausible, since a nonhelical field is less constrained. The
transition between the t−1 and the slower t−1/2 behaviour is not abrupt, but
occurs over a certain range HM/HM

max � 0.2–0.6 (cf. Fig. 1).

3 Small-Scale Dynamics

As mentioned before, the detailed conservation of ideal invariants in turbu-
lent triad interactions [82] leads to nondissipative redistribution of ideally con-
served quantities between different scales of fluid motion. While one nonlinear
interaction results in transport quasi-randomly directed towards smaller or
larger scales, on average the transfer has a preferred direction which depends
on the kind and number of ideal invariants as well as on the dimensionality
of the system under consideration.

Nonlinear spectral transport in fully developed turbulence is usually dom-
inated by local triad interactions where for the three involved wave vectors
k, p, q the relation k � p � q holds. Therefore spectral nonlinear transfer
proceeds in small steps, motivating the name turbulent cascade. Depending
on its direction which can be inferred by study of absolute equilibrium ensem-
bles (see, e.g. [31]) or direct numerical simulations a cascade is termed direct
(towards small scales) or inverse (towards large scales) (cf. Table 1). While a
direct cascade is characterized by the breakup of larger-scale fluctuations in
smaller-scale ones which are eventually annihilated at the smallest-scales by
dissipation processes, an inverse cascade leads to the formation of large-scale
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Table 1. Cascading quantities in hydro- and magnetohydrodynamics, ↘: direct
cascade, ↖: inverse cascade. The letter A signifies the mean square out-of-plane
component of the magnetic vector potential

2D 3D

Navier–Stokes E ↖ E ↘
Ω ↘ HK ↘

MHD E ↘ E ↘
HC ↘ HC ↘
A ↖ HM ↖

structures via subsequent merging of smaller-scale fluctuations. The largest
scales of such self-organization are typically determined by the spatial exten-
sions of the flow. In the case of magnetic helicity in MHD turbulence, however,
the associated largest scales of the magnetic field associated with the inversely
cascading HM can be much larger than the volume occupied by the turbulent
flow. Hence, it is possible and generally believed that the origin of dynamic
magnetic fields accompanying many celestial bodies is plasma turbulence in
their interior [19, 87] giving rise to an associated large-scale dynamo [80].

The fundament of the phenomenological understanding of turbulent flows
is the hydrodynamic K41 picture put forward by Kolmogorov in the 1940s
[49, 50] which also underlies all current phenomenologies of MHD turbulence
[15, 36, 46, 52]. Turbulence is regarded as a superposition of structures or
‘eddies’ characterized by a spatial scale, � and the associated velocity fluctu-
ation, e.g. δv� = [v(r + �) − v(r)] · �/�. For simplicity, the field is assumed to
be statistically isotropic with the fluctuation amplitude depending on � only.
The characteristic velocity at scale � can be defined via v� = 〈δv2

� 〉1/2. As
illustrated in Fig. 3, the K41 picture distinguishes different scales of motion:
energy-containing scales driving the flow, the dissipation range at smallest
scales, and the inertial range where nonlinear interactions dominate the dy-
namics and the influence of driving and dissipation is negligible. It is within
the latter region that spatial self-similarity is observed experimentally in the
two-point structure functions of order p, Sv

p (�) = 〈δvp
� 〉 ∼ �ζp , with constant,

p-dependent scaling exponents, ζp.
The K41 theory predicts values for these scaling exponents in the case

of spatially self-similar turbulence at very large Reynolds number. However,
the assumption of spatial self-similarity is not justified in reality due to the
intermittent character of turbulent fields (cf. Sect. 4). Since the lowest or-
der structure functions display only small deviations from nonintermittent
behaviour (which however become important for p � 4), see e.g. [29] and ref-
erences therein, the K41-description is still a robust phenomenological starting
point.

The structure functions are statistical moments of the two-point prob-
ability distribution of the turbulent field. Their scaling exponents provide
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Fig. 3. Schematic view of the Kolmogorov (K41) picture of turbulence using the
energy spectrum as an example

fundamental statistical information, e.g. Sv
2 (�) is linked to the one-dimensional

energy spectrum while the p-dependence of the ζp characterizes the intermit-
tency of flow structures.

3.1 Kolmogorov–Richardson Phenomenology

This model with the abbreviated name K41 successfully describes a wide range
of hydrodynamical turbulent flows in laboratory, oceans and atmosphere. The
inertial-range dynamics of the spectral energy flow is pictured as a Richardson
cascade [81]. Turbulent eddies are forming a spatial hierarchy with energy
being transferred to smaller scales by eddies becoming unstable and breaking
up into smaller fluctuations.

Under quasi-stationary conditions, the resulting spectral energy flux Π
in the inertial range is scale-independent and equal to the rate of energy
dissipation, Π = ε (cf. Kolmogorov’s second similarity hypothesis [50]). In
particular the flux can be approximated as Π = ε ∼ v2

�/τNL with the scale-
dependent nonlinear eddy turnover time τNL = �/v� implying a spectrally
local transfer mechanism. Hence, ε ∼ v2

�/τNL = v3
�/� yielding the velocity

scaling
v� ∼ (ε�)1/3 . (10)

One of the few exact results in turbulence theory, the four-fifth law (see,
e.g. [29]),

Sv
3 (�) = −4

5
ε� ,
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yields v3
� ∼ � and motivates the generalization of (10),

Sv
p (�) ∼ (ε�)p/3 . (11)

Based on the Fourier-transformed turbulent velocity vk the angle-integrated
energy spectrum Ek with k ∼ �−1 usually considered in isotropic turbulence
is defined as

Ek =
1
2

∫
d3k′ δ(|k′| − k)|vk′ |2 . (12)

The relation v2
� � kEk (see, e.g. [82]) links the scaling exponent ζ2 of Sv

2 (�)
with the inertial range scaling of Ek ∼ k−α yielding α = −(1+ζ2). Hence, the
experimentally well-supported K41-spectrum of incompressible hydrodynamic
turbulence follows as

E(k) = CKε
2/3k−5/3 (13)

with the Kolmogorov constant CK ≈ 1.6 .
The Kolmogorov dissipation scale �D gives an order of magnitude esti-

mate of the spatial scales where dissipation ∼ v2
� μ̂/�

2 starts to dominate over
nonlinear transfer, ∼ v2

�/τNL, marking the beginning of the dissipation range.
This gives

μ̂

�2
∼τ−1

NL = v�/� ∼ (ε�)1/3/�

resulting in

�D =
(
μ̂3

ε

)1/4

. (14)

3.2 Iroshnikov–Kraichnan Phenomenology

The IK picture [46, 52] tries to capture the effect of magnetic fields present
in MHD turbulence on the energy cascade by introducing a different model of
nonlinear transfer. The model is meanwhile thought to be incorrect because it
stays in the isotropic frame of the K41-phenomenology though the presence of
magnetic fields is known to generate anisotropy with respect to the local field
direction (see Sect. 3.3). Nevertheless it contains concepts probably important
for further development of MHD turbulence phenomenology.

Eddy scrambling and breakup which underlie the K41-cascade are replaced
by an energy transfer driven by shear Alfvén waves. The energy is spectrally
redistributed between different length scales by nonlinear scattering of collid-
ing Alfvén-wave packets counter-propagating along a magnetic field line.

In the following, the Elsässer quantity z� is used which is defined anal-
ogously to v� in the hydrodynamic case. Elsässer variables have the special
property that z± = 0 are exact nonlinear solutions of the ideal incompressible
MHD equations representing Alfvén wave pulses on a mean magnetic field. By
restricting consideration to MHD turbulence with small mean v-b-alignment,
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σ (see Sect. 2.3), it is not necessary to distinguish between z+ and z−. How-
ever, for finite σ the respective energy spectra can differ considerably [78],
demanding a more complex theoretical approach [38].

The coupling of magnetic and velocity fields through the generation and at-
tenuation of Alfvén waves, termed Alfvén effect, leads to approximate equipar-
tition of magnetic and kinetic energy at small-scales where τA � τNL making
the effect dynamically dominant. The process is based on the interaction of
eddies of size � with the magnetic guide field b0 which is generated by the
largest energy-containing swirls or imposed externally. As a consequence the
associated velocity perturbations v� are triggering Alfvén wave pulses by lo-
cally deforming b0. The incompressible deformations then travel along the
field lines. If the involved perturbations δv, δB are small compared to b0, one
has δv � ±δB.

For two colliding Alfvén wave pulses of extent � the interaction time for
nonlinear energy transfer is given by τA = �/b0 (in the chosen nondimensional
representation b0 represents the Alfvén speed). Due to b0 
 b� this time is
much shorter than the corresponding K41 transfer time, τNL and consequently
only a fraction ∼ (τA/τNL) of the energy exchanged in one K41 interaction is
redistributed between the colliding wave packets. Due to the random character
of the interactions, the cascade transfer time τ∗ entering the IK energy flux
z2

� /τ∗ is enlarged by the factor (τNL/τA) compared to the K41 case [24].
Accordingly, the IK phenomenology follows along the same lines as the

K41 model when replacing v� with z� and rewriting the characteristic cascade
time as τ∗ ∼ (τNL/τA)τNL. This gives the following nonintermittent inertial
range scaling

Sz
p(�) ∼ (εb0�)p/4 .

Analogously the energy spectrum is obtained as

E(k) = CIK(εb0)1/2k−3/2

with the IK dissipation length

�IK =
(

b0η̂2

ε

)1/3

.

There, however, exists an exact relation corresponding to the four-fifth law
for incompressible three-dimensional MHD [75, 76],

3∑

i=1

〈δz∓� (δiz
±
� )2〉 = −4

3
ε±� , (15)

with ε± = 1
2

∫
V

dV [μω2+ηj2±(μ+η)ω ·j], δz∓� denoting the longitudinal field
increments introduced above and δiz

±
� = (z±(r + �) − z±(r)) · ei introducing

the unit vector ei from the orthogonal base of an arbitrary co-ordinate system.
Equation (15) suggests the third-order structure function scaling Sz

3 ∼ � that
the IK model predicts for Sz

4 .
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Fig. 4. Temporal energy spectrum of solar wind fluctuations measured by the WIND
probe at a distance from the sun of approximately one astronomical unit [55] (from
[10])

The problematic issues mentioned in this section in combination with the
lack of observational evidence for 3/2-scaling (cf., e.g. [93] and Figs. 4 and 6)
have led to the development of the Goldreich–Sridhar model, presented in the
following.

3.3 Goldreich–Sridhar Phenomenology

In the isotropic K41 and the IK pictures turbulent fluctuations are charac-
terized by a single length scale �. However, the presence of a magnetic field
renders the turbulence locally anisotropic. Alfvén wave packets of extent λ
propagate along the local magnetic field b0 with the characteristic time scale
τλ ∼ λ/b0. Simultaneously, the field lines are subject to eddy-scrambling per-
pendicular to b0 on the turnover time-scale τl ∼ l/zl, where l is the field-
perpendicular extent and zl the amplitude of the fluctuations. In addition, it
has been found the nonlinear energy flux is much weaker along the direction
of the magnetic field [32, 37, 68, 85].

Goldreich and Sridhar put forward a phenomenology which takes into ac-
count the spatial anisotropy caused by the magnetic field [35, 36] and predicts
the scaling of field-perpendicular and field-parallel energy spectra. The GS-
picture is based on the idea that there is an equality of the scale-dependent
characteristic time scales τλ and τl. This critical balance expresses the fact that
magnetic-field deformations associated with the field-perpendicular turnover
time τl propagate with Alfvén speed, b0, over the parallel distance λ = b0τA
in the same time. Consequently, the field-perpendicular cascade rate is de-
termined by the turnover timescale τl leading to a Kolmogorov-like field-
perpendicular energy spectrum

Ek⊥ =
1
2

∫
dk1

∫
dk2

(
|vk|2 + |bk|2

)
∼ k

−5/3
⊥ . (16)

where k⊥ ∼ l−1 while k1 = k‖ ∼ λ−1 and k2 ⊥ k‖, k⊥.
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An interesting and robust consequence of the balance assumption is a rela-
tion between the perpendicular spatial scales l and the corresponding parallel
scales λ of the turbulent eddies [22, 34, 89]. By λ/b0 ∼ l/zl in combination
with (16) one obtains

λ ∼ l2/3 , (17)

which implies that eddies become elongated along the local field direction with
decreasing spatial scale.

Another consequence of (17) is an energy cascade parallel to b0 since per-
pendicular and parallel directions are tied to each other by the balance con-
dition τλ ∼ τl with the associated one-dimensional energy spectrum

Ek‖ ∼ k−2
‖ .

Recently, it was shown by direct numerical simulations [61, 68, 69] that
MHD turbulence permeated by a strong mean magnetic field exhibits a field-
perpendicular energy spectrum ∼ k

−3/2
⊥ . A possible explanation is an exten-

sion of the Goldreich–Sridhar picture due to Boldyrev [15]. There it is sug-
gested that an increasingly parallel polarization of Alfvénic fluctuations results
in a weakening of nonlinear turbulent interaction and, consequently, leads to
the observed IK-like scaling of the field-perpendicular energy spectrum.

3.4 Numerical Results

Experimental observations of scaling in MHD turbulence are rare due to the
great difficulty of obtaining sufficiently high Reynolds numbers in terrestrial
experiments and because of the scarcity and yet insufficient precision of astro-
nomical observations. Only high-resolution direct numerical simulations yield
an inertial range broad enough to differentiate the different numerical values
of the observed scaling exponents with sufficient accuracy. Yet, the numeri-
cally achievable Reynolds numbers in direct numerical simulations, O(103),
are at present far below realistic values, O(108)–O(1022).

Macroscopically Isotropic MHD Turbulence

Figure 6 shows an energy spectrum from a pseudospectral simulation of in-
compressible and isotropic decaying MHD turbulence with vanishing magnetic
and cross helicity (cf. Fig. 5).

The system is represented by a finite set of Fourier modes associated with
a flow in a periodic box of edge length 2π. The initial ratio EK/EM is unity.
Leapfrog scheme is applied to evolve (1) and (2) in time. In this setup the di-
mensionless dissipation parameters which are set to μ̂ = η̂ = 10−4 correspond
to Reynolds numbers Re = Rm � 5800.
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Fig. 5. Magnetic fluctuations in three-dimensional pseudospectral DNS of isotropic
(left) and anisotropic (right) MHD turbulence (bright colours indicate high values).
In the anisotropic case a strong and constant mean magnetic field normal to the top
side of the cube is applied

The run was performed over nine eddy turnover times defined as the time
required to reach the maximum of dissipation when starting from smooth ini-
tial fields. The spectrum is normalized in wavenumber using the Kolmogorov
dissipation length (14) and in amplitude assuming a Kolmogorov spectrum
(13). It was time-averaged over the period of self-similar decay, t = 6 − 8.9.
The simulation involves 10243 collocation points and is one of the largest runs
carried out so far.

Fig. 6. Compensated total energy spectrum in DNS of decaying isotropic MHD
turbulence which shows a Kolmogorov-like ∼ k−5/3 inertial range [69]. Amplitude
and abscissa are normalized to prevent secular changes caused by the attenuation
of the turbulence
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The spectrum shows a well-developed inertial range with an associated
scaling exponent α = 5/3 in agreement with solar wind measurements, see
for example [55]. The same observation has been made in related work [42,
67]. This invalidates the Iroshnikov–Kraichnan model for isotropic turbulence
without mean magnetic field although Alfvén waves are present in the system
(see below).

In forced three-dimensional compressible supersonic and super-Alfvénic
MHD turbulence the picture is not so clear with the kinetic energy spectrum
observed to be steeper, EK(k) ∼ k−1.74 [16] for M ∼ 10 and MA ∼ 3, where
M = v/a is the sonic Mach number defined with the sound speed a and
MA = v/b is the Alfvénic Mach number. The scaling exponent also shows a
dependence on the sonic Mach number [72].

Macroscopically Anisotropic MHD Turbulence

The numerical data on isotropic turbulence is in agreement with Goldreich
and Sridhar’s phenomenology. To scrutinize this model the system is made
globally anisotropic by imposing a mean magnetic field b0 (for an illustration,
see Fig. 7).

In this case, a pseudospectral 10242 × 256 forced turbulence simulation is
carried out (see Fig. 5). Due to the stiffness of the magnetic field, turbulent
fluctuations are depleted in the field-parallel direction (see below), allowing
a reduced numerical resolution along the corresponding axis. The forcing is
realized by freezing all modes with k ≤ kf = 2. Its purpose is to keep the value
of fluctuating field to mean field approximately constant. The simulation with
μ̂ = η̂ = 3 × 10−4, i.e. Re = Rm � 3300 and |b0| = 5 covers about 25 eddy
turnover times. Kinetic and magnetic energy as well as EK/EM are of order

(a) (b)

Fig. 7. Magnetic field lines in globally isotropic turbulence as in the simulation
underlying Fig. 6 (left) and in a system with strong mean field component, b0 = 5,
(right), cf. Fig. 8
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Fig. 8. Normalized and time-averaged one-dimensional parallel (dot-dashed) and
perpendicular (solid) energy spectra in DNS of three-dimensional MHD turbulence
with strong mean magnetic field [69]. The dashed line indicates IK-like scaling ∼
k−3/2 (in this compensation horizontal)

one. The system has relaxed to a state with cross helicity around 15% and
with the magnetic helicity around 0.2 of the theoretical maximum ∼ EM/kf .

Figure 8 depicts the normalized parallel and perpendicular energy spectra
averaged over t = 20 − 25 when the system is quasi-stationary. The parallel
spectrum shows a significant reduction of turbulence compared to the perpen-
dicular spectrum since the nonlinear energy transfer is depleted in the parallel
direction as theoretically expected (cf. Sect. 3.3). The drop in amplitude of
the field-parallel fluctuations compared to the field-perpendicular ones has
also been observed in shell-model calculations of MHD turbulence [20]. An
inertial range is not clearly discernible.

The perpendicular energy spectrum exhibits IK-like scaling, E(k⊥) ∼
k
−3/2
⊥ . Alfvénic fluctuations evidently dominate the energy cascade in planes

perpendicular to the mean field as is also seen in simulations of two-dimensional
MHD turbulence [14]. Their existence can be inferred from the approximate
equipartition of kinetic and magnetic energy on all field-perpendicular scales
of motion (cf. Fig. 9).

The main effect of the mean field, b0, is to restrict turbulent fluctuations
to field-perpendicular planes.

In [61], α = 3/2 is also observed for a much stronger mean field (the ratio
of fluctuations to mean component is about 3 × 10−3). However, there it is
speculated that the scaling is due to bottleneck or intermittency effects [28, 59]
caused by the use of higher-order dissipation terms, e.g. μν(−1)ν−1Δνω for
dissipativities ν > 1. Hyperviscosities of this kind are used to enlarge the
inertial scaling range but result in a nonphysical steepening of the spectrum
close to the dissipative fall-off (see, e.g. [12]). The simulations presented here
use normal viscosities, i.e. ν = 1, and do not exhibit a significant bottleneck
effect.
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Fig. 9. Magnetic (dashed) and kinetic (dotted) perpendicular energy spectra (nor-
malized and averaged) for the same anisotropic run as depicted in Fig. 8

The numerical results are at variance with recent simulations which claim
to support the Goldreich–Sridhar model by observing α = 5/3 in the perpen-
dicular energy spectrum [21, 22]. However, the mean magnetic field in these
simulations, carried out with lower numerical resolution (2563) and involving
fourth- and eighth-order hyperviscosities, has approximately the same ampli-
tude as the turbulent fluctuations, v ∼ b ∼ b0.

The simulations presented here, with b0 ∼ 5b, put the Goldreich–Sridhar
picture for configurations with a strong mean magnetic field in question and
can at present only be explained with Boldyrev’s approach (cf.
Sect. 3.3).

3.5 Dynamical Equilibrium of Kinetic and Magnetic Energy

The residual energy spectrum, ER
k (k) =

∣∣EM
k (k) − EK

k (k)
∣∣, is of interest be-

cause it sheds some light on the spectral interplay of kinetic and magnetic
energy and exhibits self-similar scaling. For isotropic decaying turbulence and
anisotropic-forced turbulence with a mean magnetic field it displays funda-
mentally different behaviour which becomes evident when comparing kinetic
and magnetic energy spectra for the two cases (Figs. 9 and 10). In both
the systems the Alfvén effect is present. However, while it dominates the
anisotropic system and leads to approximate energetic equipartition at all
scales of the flow, in the isotropic simulation this is only true for the dissipation
range.

The excess of magnetic energy with increasing spatial scale, visible in
Fig. 10, is due to the turbulent small-scale dynamo. This mechanism amplifies
the magnetic field locally through the stretching of field lines by turbulent fluid
motions. A generalization of previous theoretical work [38] allows to correctly
predict the resulting scaling exponent of the residual energy spectrum in both
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Fig. 10. Kinetic (dotted) and magnetic (dashed) energy spectra (normalized and
averaged) for the isotropic run as in Fig. 6

the cases and gives some insight into the turbulent interplay between kinetic
and magnetic energy.

Closure Theory

Among the different approaches towards a statistical theory of turbulence (see,
e.g. [26, 30, 43, 51, 53, 54, 70]), the eddy-damped quasi-normal Markovian ap-
proximation (EDQNM), originally derived for incompressible hydrodynamic
turbulence [70], has proven to be a useful compromise between mathematical
rigor and phenomenological flexibility. In its magnetohydrodynamic form [80],
neglecting helicity effects, the equations governing the spectral dynamics of
kinetic and magnetic energy read

(
∂t + 2μ̂k2

)
EK

k =
∫

�
dpdqΘkpq

(
TK

kin + TK
mag + TK

crs

)
, (18)

(
∂t + 2η̂k2

)
EM

k =
∫

�
dpdqΘkpq

(
TM

mag + TM
crs

)
, (19)

with the flux-density contributions

TK
kin = bkpq

k

pq

(
k2EK

p EK
q − p2EK

q EK
k

)
, TK

mag = ckpq
k3

pq
EM

p EM
q ,

TK
crs = ckpq

kp

q
EM

q EK
k , TM

mag = −ckpq
k3

pq
EM

q EM
k ,

TM
crs = hkpq

k

pq

(
k2EM

p EK
q − p2EK

q EM
k

)
+ ckpq

k5

p3q
EK

p EM
q .

The geometric coefficients bkpq, ckpq, hkpq defined, e.g. in [80] enforce solenoida-
lity of the turbulent fields. The triangle symbol, ‘�’, denotes integration over
mode numbers which fulfill k = p + q.
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The time Θkpq is characteristic of the relaxation of the nonlinear energy
flux involving the modes k, p and q and can be approximated by Θkpq =
t/(1 + μkpqt). Here, μkpq is a phenomenological expression for the damping
rate of the flux by higher order moments with μkpq = μk + μp + μq ensuring
energy conservation.

A straightforward choice for the damping rates is μk = τ−1
NL + τ−1

A + τ−1
D

which combines the three physical processes that underlie turbulent energy
dynamics in MHD: field-line deformation by turbulent motions on the time-
scale τNL ∼ �/

√
v2

� + b2� ∼
(
k3Ek

)−1/2, energy equipartition in interacting
shear Alfvén waves characterized by τA ∼ �/b0 ∼ (kb0)−1 and molecular
dissipation, τD ∼ (μ + η)−1k−2.

Under realistic conditions, diffusion is associated with the longest time-
scale of the turbulent system. Thus, for t 
 τD one has Θkpq � μ−1

kpq �
min(τNL, τA).

The evolution equation for the residual energy spectrum, ER
k , can be de-

rived similarly as for (18) and (19) [39] and reads in the case of negligible v–b
alignment:

(
∂t + (μ̂+ η̂) k2

)
ER

k =
∫

�
dpdqΘkpq

(
TR

res + TR
crs + TR

loc

)
(20)

with

TR
res = −mkpq

k2

p
ER

p ER
q + rkpq

p2

q
ER

q ER
k ,

TR
crs = mkpqpEqE

R
k + tkpqpE

R
q Ek ,

TR
loc = −skpq

k

(
k2EpEq − p2EqEk

)
.

The geometric coefficients mkpq, rkpq, skpq, tkpq are defined in [39].
Spectral interactions as expressed by the right-hand side of (20) are non-

local if the modulus of one wavenumber, say k, in the interacting triad differs
significantly from the wavenumbers of the other two, p ∼ q. Nonlocal interac-
tions are associated with mutual Alfvén-wave scattering and for this special
case a simplified version of (20) can be derived:

∂tE
R
k = −Γkk

(
EM

k − EK
k

)
, (21)

where Γk = 4
3k
∫ ak

0
dqΘkpqE

M
q [80].

A Phenomenology for the Residual Energy

It is assumed that the right-hand side of (20) can be written as TR
nonloc + TR

loc

[38]. This states that ER
k is a result of a dynamic equilibrium between the
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(spectrally local) dynamo effect which amplifies the magnetic field and the
(spectrally nonlocal) Alfvén effect tending towards energetic equipartition.
For stationary conditions in the inertial range (k � kD) dimensional analysis
yields (note that EM is the total magnetic energy introduced in Sect. 2)

k3E2
k︸ ︷︷ ︸

(20)

∼ k2EMER
k︸ ︷︷ ︸

(21)

. (22)

With the definitions of τNL and τA given above and assuming that the large-
scale magnetic field sets the time scale for Alfvénic interactions, k2EM �
(kb0)

2, this expression can be re-written as [69]

ER
k ∼

(
τA
τNL

)2

Ek . (23)

For Ek ∼ k−3/2 as seen in the simulation with mean magnetic field (see Fig. 8),
the known result ER

k ∼ k−2 [38] is obtained. This is in good agreement with
the field-perpendicular residual energy spectrum of the same run shown in
Fig. 11 and with two-dimensional simulations of MHD turbulence (cf. Fig. 12).

The simulation with vanishing mean magnetic field displays Kolmogorov-
like inertial range scaling (cf. Fig. 6) for which (23) predicts ER

k ∼ k−7/3. As in
this simulation the mean magnetic field vanishes, the b0 term in the expression
above denotes the mean magnetic field carried by large-scale fluctuations.
Figure 13, depicting ER

k for this case, confirms that the theoretical prediction
is well fulfilled.

Apart from its meaning for the fundamental mechanism converting kinetic
into magnetic energy (and vice versa), (23) also serves a more practical task.
It enlarges the inertial range scaling exponent of the total energy spectrum by
a factor of two via the residual energy exponent. Thus, the difference between

Fig. 11. Averaged and normalized perpendicular residual energy spectrum, ER
k⊥ =∣∣EM

k⊥ − EK
k⊥

∣∣, for the simulation with mean magnetic field (cf. Fig. 8)
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Fig. 12. Spectra of total (left) and residual (right) energy in a two-dimensional
MHD turbulence simulation [8] agreeing with (22) and (23)

Fig. 13. Averaged and normalized residual energy spectrum, ER
k =

∣∣EM
k − EK

k

∣∣,
for the isotropic simulation (cf. Fig. 6). The dotted line adumbrates IK-like scaling
∼ k−2

IK- and K41-like scaling which amounts to only 1/6 is enlarged to a much
more obvious difference of 1/3 in the residual energy spectrum (see dotted
line in Fig. 13). Consequently, the finding of ER

k⊥
∼ k−2

⊥ can be regarded as

an independent indication for Ek⊥ ∼ k
−3/2
⊥ as in Fig. 8.

4 Spatial Structure

The phenomenologies presented in the previous section assume that turbu-
lence is spatially self-similar, i.e. that it has no characteristic internal length
scale. This implies that the spatial distribution of turbulent structures is
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space-filling and statistically uniform. Experimental data, however, shows sig-
nificant deviations from this behaviour in hydrodynamic turbulence (cf. [88]
for a review), in the turbulent solar wind [18, 45] as well as in DNS of incom-
pressible [12, 21, 67, 77] and compressible [72] MHD turbulence.

The departure from self-similarity can be related to the spatial distri-
bution of dissipative turbulent structures by Kolmogorov’s refined similarity
hypothesis [48]. In contrast to (11), it postulates that Sv

p ∼ 〈εp/3
� 〉�p/3 with ε�

denoting the local energy dissipation in a sphere of radius �. This approach
is motivated by the observation that turbulent energy dissipation is not ho-
mogeneously distributed in space. Instead, small regions of intense dissipation
are embedded into a weakly dissipative environment making the associated
spatial distribution intermittent.

The Kolmogorov and Iroshnikov–Kraichnan models, which do not take in-
termittency into account, predict the isotropic structure–function exponents
as ζK41

p = p/3 and ζIK
p = p/4 respectively. Intermittency corrections to the

linear predictions are found by examination of structure–function scaling ex-
ponents ζp of various orders p and become more and more pronounced as p
increases.

The finite domains in space and time available to experiment and nu-
merical simulation limit the statistical convergence of the associated averages
necessary for determining structure functions. This problem is particularly
pronounced for functions of higher order since they react more sensitively
to extreme fluctuations of the turbulent fields. The statistical noise can be
reduced by exploiting the fact that structure functions of different order devi-
ate qualitatively in the same way from their ‘ideal’ shape, a property termed
extended self-similarity (ESS) [4].

Hence, the scaling range of a structure function, Sp, can substantially be
enlarged by regarding Sp in dependence of a reference structure function Sr

with a scaling exponent ζr that is known with sufficient precision,

Sp(Sr(�)) ∼
(
�ζr
)ζp ∼ �ξp,r .

The absolute scaling exponents can then be found via ζp = ξp,r/ζr.
In a pseudospectral simulation with 5123 collocation points the use of ESS

allows to compute scaling exponents up to order eight with sufficient preci-
sion. The second-order value ζ2 is related to the inertial-range behaviour of the
energy spectrum, E(k) ∼ k−(1+ζ2). The whole family of exponents gives more
general information about the small-scale structure of the corresponding tur-
bulent fields and represents a framework for the verification of intermittency
phenomenologies.

4.1 Intermittency Modelling

There are a number of different phenomenologies [29] which predict the
characteristic change of two-point scaling exponents with increasing order.
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The Log-Poisson model, which was first proposed for hydrodynamic turbu-
lence by She and Lévêque [83], takes a unique position among them as it
achieves very good agreement with experiments and simulations and only
contains parameters which can be estimated by physical reasoning.

The Log-Poisson phenomenology assumes a hierarchical relation between
the functions ε(p) = 〈εp+1〉/〈εp〉 which reads

ε(p+1)

ε(∞)
∼
[
ε(p)

ε(∞)

]β

, β ∈ [0, 1] . (24)

The quantity ε(∞) stands for the dissipation due to the topologically most
singular structures while β parameterizes the degree of intermittency: β → 1
corresponds to spatially homogeneous dissipation, β → 0 stands for the most
intermittent configuration where ε is concentrated in one singular structure.
Relation (24) expresses a generalized scale-covariance of dissipation [25, 84]
which is equivalent to a logarithmic Poisson distribution of the ε� [25],

In the inertial range, where 〈δvp
� 〉 ∼ �ζp and 〈εp

� 〉 ∼ �τp , the refined simi-
larity hypothesis leads to

〈δvp
� 〉 ∼

〈
εp/g

〉
�p/g ∼ �τp/g�p/g∼�ζp ⇒ ζp = p/g + τp/g . (25)

Equation (25) links the scaling exponents of turbulent fields, ζp and dissipa-
tion, τp.

Assuming that the energy to be dissipated in the most singular structures,
E∞, is scale-independent,

ε(∞) ∼ E∞/t∞� ∼ �−x with t∞� ∼ �x ,

gives
lim

p→∞
(τp+1 − τp) = −x ⇒ τp = −xp + C0 + f(p) . (26)

With (24) and τ0 = 0 one obtains f(p) = −C0β
p yielding

τp = −xp + C0(1 − βp) .

Furthermore, τ1 = 0 results in β = 1 − x/C0 and consequently

τp = −xp + C0 (1 − (1 − x/C0)p)
(25)⇒ ζp = (1 − x)p/g + C0

(
1 − (1 − x/C0)p/g

)
(27)

This is the general Log-Poisson model (see, e.g. [74]). It depends on the pa-
rameters x, g and C0 which have to be determined on physical grounds. The
nonintermittent scaling, 〈δv�〉 ∼ �1/g, fixes g (Kolmogorov g = 3, Iroshnikov-
Kraichnan g = 4).

Equation (26) is analogous to a Legendre transformation. Therefore, C0

can be interpreted as the co-dimension of a set of singularities of strength �τ∞

which is equivalent to the most singular dissipative structures. The parameter
x is related to the dissipation rate in these structures t∞� ∼ �x.
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Hydrodynamics

The hydrodynamic She–Lévêque model [83] is obtained for Kolmogorov scal-
ing, g = 3 and quasi one-dimensional dissipative structures, i.e. vorticity fila-
ments with C0 = 2 (cf. Fig. 14). The most singular dissipation rate is assumed
to be set by the flux rate of the energy cascade,

E(∞)/t
(∞)
� ∼〈ε〉 ∼ 〈v2

� 〉/t� ⇒ t
(∞)
� ∼ �2/g (x = 2/g)

⇒ ζp = p/9 + 2
(
1 − (2/3)p/3

)
.

Fig. 14. Vorticity isocontours near the maximum value of |ω| in a 5123-resolution
DNS of decaying hydrodynamic turbulence [12]

Isotropic MHD

In the case of isotropic MHD Kolmogorov-like scaling also applies (g = 3).
Maintaining the dissipation rate assumption (x = 2/g) and observing that the
most singular dissipative structures are current and vorticity sheets (C = 1,
cf. Fig. 16) one arrives at the isotropic MHD model,

ζp = p/9 + 1 − (1/3)p/3 . (28)
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The equation predicts structure–function scaling in isotropic three-dimensional
incompressible MHD turbulence with good precision and is moreover consis-
tent with the finding of a K41-like energy spectrum [12, 67]. It also agrees
well with solar wind data [5, 45] and simulations of compressible [16] MHD
turbulence. In contrast, the relation based on Iroshnikov–Kraichnan scaling,
g = 4 [40, 74], is not in accordance with experimental and numerical data.

The MHD model is indicated in Fig. 15 by the solid line. The dotted line
shows the nonintermittent Kolmogorov prediction, ζp = p/3, for comparison.

Fig. 15. Scaling exponents ζp of the |z+|-structure functions against the correspond-
ing order. The MHD Log-Poisson model (28) is depicted by the solid line and agrees
very well with isotropic MHD values [67] (not shown). Nonintermittent K41 scaling
is represented by the dotted line. Anisotropic exponents are shown for b0 = 0, 5, 10
(circles, squares, triangles). Structure functions parallel to the mean magnetic field
are given by open symbols, field-perpendicular data by filled symbols

Anisotropic MHD

Spatial anisotropy is displayed by higher-order statistics in MHD turbulence
with and without a mean magnetic field as shown in Fig. 15 [68] (see also
[21, 22, 63, 85] and [62] for the compressible case). The data stems from
a globally isotropic 5123-simulation (b0 = 0, circles) of decaying turbulence
and from forced anisotropic 5122 × 256-simulations with mean magnetic field
(b0 = 5, 10, squares/triangles). For the anisotropic runs, the resolution along
b0 can be reduced to 256 collocation points as the turbulence is depleted in
this direction (cf. Fig. 8) due to the stiffness of the magnetic field lines.

Structure functions are calculated with the space increment, �, taken either
parallel or perpendicular to the magnetic field. The direction of the local field
is found by applying a top-hat filter of width � to the magnetic fluctuations
(for details, cf. [68]).
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Fig. 16. Dissipative micro current sheets in isotropic (left) and anisotropic (right)
turbulence. The anisotropic system is permeated by a mean magnetic field of
strength b0 = 5 pointing upwards (cf. Fig. 7). Each current sheet is surrounded
by vorticity sheets in quadrupolar configuration

In the field-parallel direction the structure function exponents show an
asymptotic approach towards a straight line with increasing b0. This indicates
a decrease of intermittency in this direction, i.e. more homogeneous dissipa-
tion. The field-perpendicular exponents display a gradual transition towards
values known from two-dimensional turbulence simulations; in fact the per-
pendicular exponents for b0 = 10 are identical within the error margin with
two-dimensional results [13, 78].

Figure 16 suggests a plausible explanation: while the dissipative current
sheets (and the associated vorticity sheets) show no preferred orientation in
the isotropic case, they tend to align with an applied mean magnetic field. The
aligned configuration results in increased homogeneity of dissipation in the b0-
direction and makes the system look two-dimensional in field-perpendicular
planes. A generalized version of the isotropic MHD intermittency model (28),
ζp = p/g2+1−(1/g)p/g, where g is a free parameter setting the energy cascade
rate in the respective parallel/perpendicular direction, is able to reproduce the
observed scaling exponents [68].

5 Summary

The understanding of the nonlinear energy cascade and the spatial small-scale
structure of incompressible MHD turbulence is largely based on phenomenol-
ogy and direct numerical simulation. This chapter briefly summarizes the
current level of knowledge and highlights recent developments in this field of
research. Particular stress is put on the difference between isotropic turbulence
and configurations permeated by a mean magnetic field. Properly taking into
account spatial anisotropy of the turbulence induced by the magnetic field is
an important challenge to MHD turbulence theory at present.
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The physical picture of the turbulent energy cascade is still under dis-
cussion. While there is ample evidence of Kolmogorov scaling in numerical
simulations of globally isotropic MHD turbulence, recent high-resolution sim-
ulations where a strong mean magnetic field is imposed on the turbulent
flow show Iroshnikov–Kraichnan-like scaling for field-perpendicular fluctua-
tions (cf. Sect. 3.4). This rules out the Goldreich–Sridhar model which is
the first anisotropic phenomenology of MHD turbulence and predicts field-
perpendicular Kolmogorov spectra. These findings have been corroborated
by results of EDQNM closure theory calculations which give a simple relation
between the residual and the total energy spectrum verified by numerical sim-
ulation. A recent enhancement of the GS-model by Boldyrev might however
explain the observed behaviour.

The intermittent small-scale structure, which is probed by higher-order
two-point statistics, is visible in the structure–function scaling exponents.
In isotropic MHD turbulence, their characteristic behaviour can be matched
well by a Log-Poisson model which takes into account that the energy cas-
cade is Kolmogorov-like and that the most singular dissipative structures are
quasi-two-dimensional current and vorticity sheets. The model can be gener-
alized to reproduce the structure–function scalings parallel and perpendicular
to an applied mean magnetic field. Numerical simulations with increasing
field strength show, furthermore, that the system becomes gradually two-
dimensional in the field-perpendicular direction while the dissipative struc-
tures turn out to be more homogeneous and less intermittent along the mean
field. This behaviour is the consequence of the alignment of dissipative current
and vorticity sheets with the mean magnetic field.
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1 Introduction

Supernovae have attracted attention since the dawn of astronomy. They range
among the brightest astrophysical events and the strongest explosions in the
Universe since the Big Bang. In astrophysical processes, supernovae play a
significant role. They enrich the interstellar medium with heavy elements,
drive shock waves, and influence the formation of stars and cosmic structure.
A subclass of these objects – termed type Ia supernovae (SNe Ia) – has re-
cently been applied in cosmological distance determinations, indicating that
our Universe is currently undergoing an accelerated expansion [57, 71]. This
result has extensive consequences for physics since it may be interpreted as a
first glimpse on a new “dark” energy form accounting for as much as 70% of
the energy contents of the Universe (for a review see [39]).

Therefore, one of the most challenging tasks in modern astrophysics is to
explain the nature of these objects. Yet, despite decades of effort, a consistent
picture explaining all details of supernova observations is still lacking. Assum-
ing that supernovae originate from a single stellar object, only its gravitational
binding energy [95] or its nuclear energy [29] can account for the observed ex-
plosion strength. Both mechanisms have been associated with subclasses of
supernovae – the release of nuclear energy with SNe Ia and gravitational en-
ergy release in a core collapse with all other classes. Here, we focus on the
former, since, as will be shown below, the nuclear energy release involves tur-
bulent combustion.

A widely accepted progenitor scenario for SNe Ia is that of a white dwarf
(WD) star consisting of carbon and oxygen. White dwarfs are supported by
the electron degeneracy pressure that depends on the mass density while it is
virtually independent of the temperature. Such objects mark the final stages of
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the evolution of small and medium-size stars in the mass range from 0.80M�
to 8M�. Before becoming a WD, these stars are stabilized against gravita-
tional collapse by nuclear burning – obviously a limited energy source. Once
the nuclear fuel is exhausted (or cannot be burnt anymore under the prevailing
conditions), a WD is formed that is stabilized by the pressure of degenerate
electrons thus being a very inert object. It cools down for billions of years
and finally disappears from observation. However, if dynamics is introduced
into the system by a binary companion, the WD might indeed reach an explo-
sive state due to mass accretion. Several possibilities are conceivable [27], and
while none can be excluded, research in the last years focused on the so-called
single-degenerate Chandrasekhar mass model. Here, the WD accretes hydrogen
and helium from a nondegenerate main-sequence star or an asymptotic giant
branch star.1 This material is transformed into carbon in quiescent hydrostatic
burning at the surface of the WD (e.g. [52]). Thus, its mass steadily increases.
However, for a WD there exists a fundamental limit – the Chandrasekhar
mass – beyond which the pressure of the degenerate electrons cannot stabi-
lize it against gravitational collapse [12]. Approaching this limit, the density
at the WD’s centre increases dramatically so that finally nuclear reactions
of carbon to heavier isotopes ignite. Unlike a normal star, the degeneracy of
the WD prevents it from compensating for the energy release by expansion
cooling, because an increase in temperature does not imply an increase in gas
pressure and thus expansion. Since nuclear reaction rates are very sensitive
to temperature, eventually a thermonuclear runaway will occur in a confined
region near the centre of the star, giving rise to an outward-travelling reac-
tion wave (for an analysis of the ignition process see [24, 28, 30, 36, 93]). This
marks the ignition of a thermonuclear flame.

The reaction wave is able to propagate in two distinct modes (see
Sect. 2.1) – a supersonic detonation and a subsonic deflagration. First at-
tempts to simulate thermonuclear supernova explosions assumed a prompt
detonation [3]. Since here the entire star is burnt at the original high den-
sities, such models fail to produce sufficient amounts of intermediate mass
elements (IME) like silicon, sulphur and calcium observed in the spectra of
SNe Ia. If, on the other hand, the flame starts out in the subsonic deflagration
mode, the material ahead of it can pre-expand before being burnt. Therefore,
nuclear reactions partially take place at lower densities where IME are syn-
thesized. A laminar deflagration flame, however, is far too slow to explain the
energy release needed for an explosion of the star.

This problem can be solved noting that turbulence will be generated and
affects the flame. The interaction of the flame with turbulent motions acceler-
ates its propagation. In a parametrized way this was taken into account in the
pioneering W7 model [54], which is still used as a standard explosion model
for SNe Ia in many fields of astrophysics. However, being a one-dimensional

1 The former are still burning hydrogen in their core while the latter have already
undergone phases of helium burning in their core and off-centre in spherical shells.
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simulation, it lacks a consistent description of the turbulence–flame interac-
tion and the arbitrariness of choosing an effective flame propagation speed
was exploited to fit the observations. In this way it was able to guide further
developments.

With multi-dimensional models of thermonuclear supernova explosions, a
self-consistent description of the flame physics has come into reach. Advances
in numerical techniques and in computer power over the past decade led to a
rapid development of two- and three-dimensional simulations.

The implementation of a turbulent combustion model in multi-dimensional
simulations of thermonuclear supernovae is the main focus of this article and
will be reviewed in the following.

2 Combustion in SNe Ia

2.1 Fundamentals of Combustion Physics

The flame propagation phenomenon is captured in the equations of reactive
fluid dynamics. These combine the Navier–Stokes equations of hydrodynamics
with species conversion and energy generation in reactions.

The system under consideration is therefore described by the following set
of equations:

• mass conservation
∂ρ

∂t
= −∇ · (ρv), (1)

• momentum balance

∂ρv

∂t
= −∇ · (ρvv) − ∇ · Π + ρf , (2)

• species balance

∂ρXi

∂t
= −∇ · (ρXiv) − ∇ · (ρvD

i Xi) + ρωXi
i = 1 . . . N, (3)

• and energy balance

∂ρetot

∂t
= −∇·(ρetotv)−∇·(vΠ)+ρv ·f +ρ

N∑

i=1

Xiv
D
i ·f i−∇·q+ρS, (4)

where Π, f , Xi, vD, ω, q and S denote the pressure tensor, external forces,
mass fraction of species, diffusion velocity, reaction rate, heat flux and energy
source terms due to reactions respectively. All other symbols bear their usual
meanings (see the chapter “An Introduction to Turbulence”).

Certainly, the terms included in these equations do not account for all
physical effects that could be related to a combustion process. For instance,
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we neglect in the following the radiative heat flux for reasons given in [90]. The
balance equations stated above have to be complemented by a set of auxiliary
relations. The equation of state relates pressure to density, specific internal
energy (eint = etot − v2/2) and composition:

p = fEOS(ρ, eint,Xi). (5)

Additionally, one has to supply expressions for the diffusion velocities and
the external forces. The source terms in the species and energy equation de-
pend on density, temperature and composition as

ωXi
= ωXi

(ρ, T,Xi) (6)
S = S(ωXi

) (7)

Considering an ideal fluid with no internal friction, the viscosity vanishes
and the pressure tensor simplifies to the scalar pressure. If we further neglect
the microphysical transport terms, the equations above simplify to the well-
known (reactive) Euler equations:

∂ρ

∂t
= −∇ · (ρv), (8)

∂v

∂t
= −(v∇) · v − ∇p

ρ
+ f , (9)

∂ρXi

∂t
= −∇ · (ρXiv) + ρωXi

i = 1 . . . N, (10)

∂ρetot

∂t
= −∇ · (ρetotv) − ∇(pv) + ρv · f + ρS. (11)

These, of course, do not account anymore for the full phenomenon of com-
bustion. However, if the scales under consideration are much larger than the
width of the reaction zone, it is justified to simplify the burning front to a
moving discontinuity in the state variables, which is referred to as “flame
front”.

This discontinuity approximation allows to relate the prefront and
postfront states. Under the condition of continuity in all flux densities, the
Euler equations of fluid dynamics admit the formulation of certain jump con-
ditions for the state variables (see e.g. [38]). This is achieved by integrating
them over an arbitrary volume containing a part of the flame front. In this
way one obtains the Rayleigh criterion for the square of the mass flux jm over
the front,

j2
m = (ρuvu,n)2 = (ρbvb,n)2 =

pu − pb

Vb − Vu
, (12)

where the indices u and b indicate states in the unburnt and burnt material,
respectively, and n denotes components normal to the flame front. V := 1/ρ
is the specific volume. As a second important relation, the Hugoniot curve is
found:
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Fig. 1. Relation between unburnt (Vu, pu) and burnt (Vb, pb) states (left) and
closeup of the detonation branch (right). The bold solid curve is the Hugoniot while
the dashed curve indicates the ordinary shock adiabatic through the initial state
(following [40] and [38])

eint,u − eint,b = Δh0 −
pu + pb

2
(Vb − Vu), (13)

where Δh0 denotes the difference in the formation enthalpies of burnt and
unburnt material.

Using the Hugoniot curve and the Rayleigh criterion, conditions for burnt
states can be derived for given unburnt states. This is illustrated in Fig. 1 as-
suming an ideal gas equation of state. The state of the burnt material must lie
on the Hugoniot curve (sometimes also called detonation adiabatic). Because
of the Rayleigh criterion (12), the unburnt and the resulting burnt states are
connected by straight lines (the so-called Rayleigh lines, indicated in Fig. 1
as light dashed lines, e.g. ac ), the slope of which corresponds to the negative
square of the mass flux density over the front. This excludes the part AA′ of
the Hugoniot curve from the range of possible final states, because for states
of the burnt material in this range the mass flux density would be imaginary.
Separate modes of flame front propagation can be identified by constructing
the tangents to the Hugoniot curve starting from (Vu, pu). The slope of these
tangents is related to the velocity of the front with respect to the unburnt
material by virtue of Eq. (12). These slopes can be compared to the slopes
of tangents to the ordinary shock adiabatic through the initial state (cf. right
plot of Fig. 1) measuring the sound speed with respect to the unburnt material
[38]. For final states on the Hugoniot above A, the flame is supersonic with
respect to the fuel and the combustion mode is termed detonation and for final
states below A′ the so-called deflagration advances subsonically with respect
to the fuel. However, in both modes its velocity can still be supersonic or
subsonic with respect to the ashes. The boundaries between these possibilities
are given by the points marked O and O′ in Fig. 1. They are constructed by
drawing the tangents to the Hugoniot starting from the initial state (Vu, pu).
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O and O′ are called the upper and lower Chapman–Jouguet points respec-
tively. The flame advances sonically with respect to the ashes in them and
supersonically above O and below O′ (see [38, 40]).

It turns out that the way the reaction wave is mediated in the deflagration
and the detonation modes differs fundamentally. While detonations are driven
by shocks, deflagrations are mediated by microphysical transport phenomena.

2.2 Thermonuclear Combustion in Degenerate C + O Matter

Obviously, reaction partners of a different species are not required in ther-
monuclear burning. Thus, in many respects, thermonuclear combustion in
WD matter is similar to what is known as “pre-mixed combustion” in chem-
ical processes. This is exploited below where numerical techniques developed
in combustion engineering are applied to the astrophysical problem.

Yet there are in fact some differences, caused by the peculiarities of the
degenerate C+O matter in which the combustion process takes place. The
reactive Navier–Stokes equations given above can be reformulated in a non-
dimensional way. In this case, several similarity numbers enter the equations
relating specific properties of the flow. These can be used to characterize the
physical processes.

The transport processes in WD matter are dominated by the electron gas.
This is due to the high degeneracy of the material. The Fermi energy EF of
the electron gas is about 1MeV, while the thermal energy kBT is ∼ 10 keV.
Electron states below EF − kBT are occupied and limit the final states for
scattering processes to high velocities. Therefore the mean free path of the
electrons is much larger than that for the baryons.

This has significant impact on the Lewis number comparing thermal con-
duction with diffusive transport and on the Prandtl number relating momen-
tum transport to thermal conduction. With values given by [44, 56] and [90]
these amount to Le ∼ 107 and Pr ∼ 10−3, characterizing one of the main
differences between thermonuclear flames in degenerate matter and chemical
flames, where usually Le ∼ 1 and Pr ∼ 1. These differences have conse-
quences for certain instabilities that occur in flames and on the transition
between regimes of turbulent combustion [50].

The basic properties of laminar thermonuclear flame propagation can be
inferred from one-dimensional calculations of planar flames with an extended
reaction network. In particular, [90] fitted numerically computed values for
the laminar flame speed in C+O WD matter of mass density in the range
107 g cm−3 ≤ ρu ≤ 1010 g cm−3 and found the following formula:

sl = 92.0 × 105

(
ρu

2 × 109

)0.805 [
X(12C)

0.5

]0.889

cm s−1 (14)

According to [90], this formula approximates the laminar flame speed to about
10% in the density range mentioned above.
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2.3 Flame Instabilities

Flame propagation is subject to several instabilities. Those are of eminent
importance in SN Ia models. In particular, three instabilities dominate the
flame propagation on different scales in the supernova explosion, namely the
Rayleigh–Taylor (RT) instability, the Kelvin–Helmholtz (KH) instability and
the Landau–Darrieus (LD) instability. Other instabilities of flames play no
significant role here. An example is the so-called diffusional–thermal instability
which is suppressed due to the large Lewis number.

On the largest scales, the flow is dominated by the RT instability. The
flame starts out near the centre of the WD and burns outwards. In the ashes
behind the flame, the degeneracy is partially lifted due to the energy release
in nuclear burning and therefore the density here is lower than in the cold fuel
ahead of the flame. This stratification, however, is inverse to the gravitational
acceleration of the star and therefore subject to a buoyancy-driven instability.
The RT instability in its nonlinear stage leads to bubbles of burning material
that rise into the fuel. At the interfaces of these bubbles – where the flame
is located – strong shear flows are expected. These give rise to shear (KH)
instabilities.

Contrary to these two general flow instabilities, the LD instability [17, 37]
is specific to self-propagating fronts. In an SN Ia explosion, it applies to all
scales on which the discontinuity approximation of the flame is valid. The ori-
gin of the instability is the refraction of the streamlines of the flow at the den-
sity jump over the flame. The fluid velocity component tangential to the flame
front is steady and mass conservation leads to a discontinuity in the normal
velocity component. This causes a broadening of the flow tubes in the vicinity
of a bulge of a perturbation. Thus the local fluid velocity is lower than the
fluid velocity away from the front. Therefore the burning velocity of the flame
is higher than the corresponding local fluid velocity and this leads to an in-
crement of the bulge. The opposite holds for recesses of the perturbed front.
In this way the perturbation keeps growing. The LD instability, however, sta-
bilizes in the nonlinear regime. Following the flame propagation by means of
Huygens’ principle, a flame front perturbed from a planar geometry will evolve
into a cellular structure. Since, by a simple geometrical argument ([94]), the
cusps of this structure should burn faster than the crests, this structure leads
to a stabilization. [76, 77, 79] showed that this effect holds for thermonuclear
flames in SNe Ia.

Such stabilizing effect in the nonlinear regime exists neither for the RT nor
for the KH instability. Therefore, the flame propagation is determined by these
effects. On small scales, however, both are suppressed. For the RT instability
this results from the competition of the growth time scale of perturbations
with the burning time scale. This constitutes a minimum length scale capable
of deforming the flame front (sometimes called “fire polishing scale”) [90]:

λmin =
s2
l

2π

(
g
ρu − ρb

ρu + ρb

)−1

. (15)
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262 F.K. Röpke and W. Schmidt

On larger scales scales, the flow field will very soon be dominated by nonlin-
ear effects and a typical structure found here are mushroom-shaped bubbles.
The preference of large structures as a result of the buoyancy instability orig-
inates from the tendency of initially smaller bubbles to merge into larger ones
while rising. For the situation in SN Ia explosions this has been simulated by
[21, 65–67, 69, 74].

The general picture of a flow field dominated by the KH instability is
that in the vicinity of the tangential discontinuity vortices will develop in
the nonlinear regime. However, for the KH instability to occur, a tangential
discontinuity is necessary. This requires the mass flux across the surface of the
discontinuity to vanish, which is, of course, not the case for burning fronts.
Here, the finite mass flux across the discontinuity stabilizes the flame against
the KH instability. Nevertheless the situation changes if the flow field around a
burning RT-bubble is dominated by buoyant acceleration. Then, the mass flux
can become negligibly small compared to the tangential velocity components
[45]. Such a situation can be regarded as being similar to a tangential shear
flow in a viscous fluid. Here, the mass flux across the surface does not vanish
either, because of microscopic transport, and this leads to a shear layer of
finite thickness. The question of the stability of this modified configuration was
addressed in numerical simulations by [45] and [49]. The authors concluded
that the flames become unstable when the shear velocities reach the laminar
burning velocities of the flame fronts.

2.4 Turbulent Combustion

Owing to the relatively small viscosity in combination with the large scales of
stellar objects, very high Reynolds numbers are common in astrophysics; the
burning process of SNe Ia, however, is extreme. Turbulence is generated in a
generic way. An estimate for the Reynolds number around a typical burning
Rayleigh–Taylor bubble is derived from its typical size (L ∼ 107 cm), a shear
flow velocity of vshear ∼ 107 cm s−1, a typical density of 109 g cm−3 and a shear
viscosity μ ∼ 109 cm2 s−1:

Re =
ρLvshear

μ
∼ 1014.

Given the huge value of the Reynolds number, it is evident that shear in-
stabilities will lead to the generation of turbulence in addition to the buoyancy
effect and a turbulent energy cascade is expected to establish (see the chapter
“An Introduction to Turbulence”). The large Reynolds number implies that
a huge range of scales is dominated by turbulence effects – a severe compli-
cation in numerical approaches to the problem as will be discussed below.
As has been pointed out in the literature many times and recently has been
confirmed by large scale supernova simulations ([67]), turbulent combustion
is the key to deflagration models of SN Ia.
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The theory of turbulent combustion, however, is still under continuous
development and only a fraction of the phenomena can be regarded as be-
ing well understood. Certainly, one of the most important notions in this
subject is that turbulent combustion takes place in distinct regimes, which
are accessible by different methods of theoretical modelling. A suitable way
of classification is to relate the turbulent velocity fluctuations (normalized
to the laminar burning velocity) to the corresponding length scale (normal-
ized to the flame width). A diagram of this classification was introduced by
[7] and [58] and is shown in Fig. 2. Here, the transition regions between
the regimes are determined by comparing the velocity of turbulent eddies
at certain scales characteristic for the flame to the laminar burning veloc-
ity. As long as the turbulent eddies of a given size are much slower than
the laminar burning velocity, the flame will burn through the eddies before
they can affect its structure. The corresponding regime is called the wrin-
kled flamelet regime. The turbulent flow bends the flame slightly on large
scales compared to the flame width and thereby increases the flame surface.
However, it does not affect the inner structure of the flame (and thus micro-
scopically the flame velocity remains sl). In the corrugated flamelet regime
turbulent eddies noticeably alter the shape of the flame, but still leave its
inner structure unaffected. The transition scale lGibs between the regimes is
defined by comparing the eddy turnover time to the flame crossing time at
that length:

τeddy(lGibs) = τflame(lGibs) ⇒ v(lGibs) = sl. (16)

This scale lGibs is identified as the Gibson scale [58]. If it becomes smaller
than the thermal width of the flame, then turbulent motion starts to modify
the structure of the preheat zone and the flame enters the thin reaction zone
regime. With smaller Gibson scales eddies become able to distribute material

Fig. 2. Regimes of premixed turbulent combustion (following [60])
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out of the flame structure and to disrupt the closed flame front. Therefore,
the region lGibs < lf is also termed the distributed burning regime. For a
Gibson scale smaller than the reaction zone (lGibs � 0.1lf ), turbulent eddies
finally start to dominate this part of the flame as well. The corresponding
regime is that of broken reaction zones which ultimately turns into the so-
called well-stirred reactor. Except for the flamelet regimes all other turbulent
burning modes modify the inner structure of the flame, whose (microscopic)
propagation velocity then deviates from sl accordingly.

We would like to emphasize at this point, that the above classification
and in particular, the transition regions strictly apply to chemical combus-
tion processes only. Here, the Prandtl number is Pr ∼ 1. This is not true
for the situation in SN Ia explosions (cf. Sect. 2.2). The possible changes
have been investigated by [50]. The authors point out that the transition
between the flamelet and the thin reaction zones regimes may shift towards
stronger turbulent fluctuations for lower Prandtl numbers. This transition,
however, is expected to take place at fuel densities of �107 g cm−3, which
are reached only in the very late stages of the explosion. A preliminary ap-
proach to take this stage into account was described by [75], but here we focus
on the burning in the flamelet regime, which accounts for the major part of
energy generation and nucleosynthesis. This results from the fact that the
Gibson scale in SN Ia explosions is much larger than the flame width which
is only of the order of millimetres at fuel densities above 107 g cm−3 [90].
Typically, the laminar burning velocities are around 50 km s−1 [90]. Assum-
ing the energy input into a turbulent cascade following Kolmogorov scaling
to take place at the length scales of Rayleigh–Taylor bubbles (107 cm) with
shear velocities of the order of 107 cm s−1, the Gibson scale is of the order of
10 km.

In the flamelet regime, the corrugation of the flame by turbulent eddies
enlarges the flame surface and consequently increases the net burning rate
accelerating the propagation of the mean flame front. In large simulations, the
corrugated flame surface cannot be fully resolved. This is usually compensated
by assigning an effective turbulent flame speed st to the artificially smoothed
front. One goal in modelling flamelet combustion is to relate this quantity to
the turbulent velocity fluctuations v′. From the experimental study of Bunsen
flames, Damköhler already suggested in the 1940s that st ∼ v′ [16]. We adhere
to the following relation found from a theoretical analysis [63]:

st = slam

√

1 + Ct

(
qsgs
slam

)2

, (17)

An exact definition of the characteristic velocity of sub-grid scale turbu-
lence, qsgs =

√
3v′, will be given in Sect. 3.3. We set Ct = 4/3. Then st � 2v′

in the asymptotic regime of turbulent burning, which is consistent with the
result found in [59].
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3 Modelling Approach

Modeling SN Ia explosions numerically is a very challenging task. This is
mainly due to the many different scales involved in the problem. Since the
phenomenon of turbulent combustion is one of the key features, the wide
range of scales covered by the turbulent cascade sets the range of relevant
spatial scales – starting at the size of the WD star (radius ∼2, 000 km) down
to the Kolmogorov length (less than a millimetre). The internal structure of
the flame itself is thinner than a centimetre and thus not resolvable in current
three-dimensional simulations. Most relevant nuclear reactions take place on
an extremely short timescale compared to the explosion process, which itself
is extremely short compared to the progenitor evolution which determines the
initial conditions for the explosion. The pre-ignition evolution is an intricate
issue by itself and not well understood so far. It requires numerical techniques
different from the one usually applied in the explosion models, and will there-
fore be elided in the following discussion. All multi-dimensional explosion
simulations so far ignited the flame in some arbitrarily chosen configuration.

Hydrodynamics, flame propagation and turbulence clearly require mod-
elling when implemented in numerical schemes and a number of approxima-
tions have to be made. These have led to a wide variety of implementations in
numerical simulations. For the hydrodynamics several standard methods ex-
ist. Eulerian finite volume techniques (e.g. [10, 21, 67]) as well as Lagrangian
smooth particle hydrodynamics codes [23] have been applied. Implicit schemes
[41] and special low-Mach number implementations [2] provide different ap-
proaches.

Two distinct strategies of flame modelling (apart from resolved flames in
small-scale simulations) have been suggested. One scheme exploits the fact
that from the scale of the WD the flame appears as a sharp discontinuity
[68] and will be described in more detail in Sect. 3.2. The other approach
artificially broadens the flame structure such that it becomes resolvable on
the computational grid [32]. In the following sections we discuss a particular
implementation approach.

3.1 Hydrodynamics

Because of the wide range of scales the only way to model full-star SN Ia ex-
plosions in multiple dimensions is to treat the flame propagation and hydrody-
namics of the flow separately. The former is usually modelled in a parametrized
way. In the spirit of this operator splitting approach, the remaining parts of
the reactive Navier–Stokes equations are the simpler reactive Euler equations.

Implementation of Fluid Dynamics

The reactive Euler equations are solved applying a finite volume technique.
Based on the integral formulation of the balance equations, this approach pro-
vides conservativity. The state variables are discretized in “control volumes”.
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Thus, each value represents an average over some interval (“grid cell”). Our
discretization is strictly spoken neither Eulerian nor Lagrangian, but follows
the more general moving grid approach, of which both are limiting cases. This
technique is particularly useful in connection with thermonuclear supernova
explosion simulations, since in this way the expansion of the WD star can be
followed for arbitrary times without compromising initial resolution [72]. In
an improved version, the flame and the WD are followed with nested grids, en-
abling a fine resolution of the flame in a uniform grid part (which is necessary
for the implementation of the sub-grid-scale turbulence model, see Sect. 3.3)
and a coarse outer grid with exponentially growing grid size covering the star
[78].

A cell-average of a density a of an extensive quantity can be followed in
the moving grid discretization by a combination of the balance equation in
Eulerian form

∂

∂t
a = −∇ · (av) + s(a),

with s(a) denoting the source term, and the moving grid transport theorem
(see e.g. [43, 72])

d
dt

∫

Vgrid

(adVgrid) =
∫

Vgrid

{
∂a

∂t
+ ∇ · (avgrid)

}
dVgrid, (18)

where d/dt denotes the derivative with respect to the moving grid and mov-
ing grid quantities are marked with the index “grid”. From this, an integral
formulation of the balance equation

∫

Vgrid

s(a) dVgrid

=
d
dt

∫

Vgrid

adVgrid +
∫

Vgrid

∇ · [a(v − vgrid)] dVgrid

=
d
dt

∫

Vgrid

adVgrid +
∫∫

∂Vgrid

avrel · dS,

arises, which, applied to the appropriate hydrodynamical quantities, defines
the set of equations that is solved numerically. This is achieved by updating
the cell-averages according to the source terms and the fluxes over the grid
cell interfaces. These fluxes are determined by solving the Riemann problems
at the cell interfaces. To this end, the average values at the cell centres are
extrapolated to the boundaries. Following the Piecewise Parabolic Method
(PPM) as introduced by [13], this is done in a parabolic reconstruction cor-
responding to a higher order Godunov scheme. The Riemann problems are
solved utilizing the iterative scheme suggested by [14].

To avoid multi-dimensional Riemann problems, directional splitting is ap-
plied in the multi-dimensional simulations. Time steps for the integration
are determined according to the CFL criterion with a time step reduction
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by a factor of CCFL = 0.8. The numerical implementation is based on the
PROMETHEUS code [19].

We note, however, that turbulent combustion in SNe Ia is highly subsonic.
Therefore, PPM is certainly not the most efficient scheme available. A future
implementation of alternative hydrodynamics solvers that are tailored to the
specific situation, such as incompressible low-Mach number approximations,
would be desirable (for a recent approach see [2]).

The Equation of State for White Dwarf Matter

White dwarfs are the relics of stars that have ceased nuclear burning and are
therefore not supported against gravitational collapse by thermal pressure
anymore. By contracting from their former size they reach extremely high
densities and are thus part of the class of compact astrophysical objects [11].
The interior of a WD resembles a very dense solid with an ion lattice sur-
rounded by degenerate electrons. These provide the cold degenerate fermion
pressure that supports the WD against further contraction up to the limiting
Chandrasekhar mass (about ∼1.4M�) [12].

The degenerate electron gas governs the equation of state. The equations
for energy and pressure are given by the usual expressions of quantum statis-
tics. Taking into account electron–positron pair creation at high densities, the
Fermi-integrals are modified according to [15]. Since the calculation of the
Fermi-integrals is numerically expensive, the corresponding values are read
off a precalculated table via bilinear interpolation.

Further contributions come from the photon gas following a black-body
spectrum, and the completely ionized nuclei which are assumed to be in
thermal equilibrium with the electron gas and described by the Maxwell–
Boltzmann statistics.

Simulating a stage after convective carbon burning, solidification effects
are neglected, allowing the treatment of the nuclei as an ideal gas. Corrections
due to Coulomb interaction between electrons and baryons are only marginal
and thus they are also neglected. Neutronization occurs in the reaction prod-
ucts at very high densities (e.g. [8, 53]), but this effect is not yet taken into
account in the implementation presented here [66, 73].

External Forces: Gravity

Obviously, the self-gravity of the WD star introduces an external force to the
hydrodynamical equations (cf. Sect. 2.1):

f = −∇Φ, (19)

where Φ is the gravitational potential. Since for Chandrasekhar-mass WDs
GM/Rc2 ∼ 10−3, general relativistic effects are irrelevant. It is thus well-
justified to apply the Newtonian limit, where Φ is given by Poisson’s equa-
tion ΔΦ = 4πGρ. The numerical solution of this elliptic partial differential
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equation introduces some complications especially in parallel computational
code designs. Fortunately, in SN Ia explosion matters are simplified by the
low density contrast over the flame. Moreover, an overall isotropic expansion
in the explosion is a reasonable assumption. Therefore, one can neglect angu-
lar variations and approximate the gravitational potential of the WD by its
monopole moment

Φ0(r) = −G
r

∫ r

0

4πr′2ρ̄(r′)dr′ − G
∫ ∞

r

4πr′ρ̄(r′)dr′,

with ρ̄(r) denoting the angular average of the density, which can be numeri-
cally implemented in a straightforward way.

Source Terms: Thermonuclear Reactions

The initial WD material consists of a mixture of mainly 12C and 16O. These
nuclei are burnt in thermonuclear reactions forming heavier species. The com-
position of the ashes depends on the density and on the temperature during
burning and in principle many isotopes play a role here. A correct treatment
of the nuclear reactions would require a reaction network including hundreds
of isotopes and reaction rates between them. Such an approach, however,
cannot be realized with current computational resources. Therefore, simpli-
fied networks are usually applied to describe the reactions. Since the focus of
the implementation described here is to follow the explosion hydrodynamics,
a particularly simple treatment of the reactions is chosen. Apart from the
initial carbon and oxygen, only three other species are taken into account.

At high fuel densities, burning proceeds to what is known as nuclear statis-
tical equilibrium (NSE). In our approximation this is described as a mixture
of iron group elements (represented by 56Ni) and α-particles. Once the fuel
density drops below 5.25 × 107 g cm−3, burning is assumed to be incomplete
and to terminate in intermediate mass elements (IME, represented by 24Mg).
At very low fuel densities, reaction rates will eventually become too slow to be
relevant in the explosion process (currently, a threshold of 107 g cm−3 is set in
most models but burning may continue to densities of a few times 106 g cm−3).

In order to handle the energy release due to the reactions, the differences
in binding energies between the exemplary species are released in material
that has been crossed by the flame. The change in composition of the NSE
material depending on temperature is taken into account by adjusting the
α/56Ni proportion according to tabulated values.

We note, however, that a far more detailed description of the nuclear reac-
tions and yields is still possible in the described approach. Concurrently with
the explosion hydrodynamics, a number of tracer particles is advected, which
record the temporal evolution of temperature and density in co-moving fluid
elements. This data can then be used to reconstruct the nucleosynthesis in a
postprocessing step [73, 92] involving an extended nuclear reaction network.
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3.2 Flame Model

The Level-Set Technique

The method that is applied in our simulations to parameterize the flame
propagation is based on the so-called level-set technique that was introduced
by [55]. The central idea of the level-set method is to associate the flame with
a moving hypersurface Γ (t), which is the zero-level set of a function G(x, t):

Γ (t) := {x | G(x, t) = 0}. (20)

In principle, there is no constraint on G away from the front and it thus
could be chosen arbitrarily. However, it is convenient to prescribe G to be a
signed distance function

|∇G| ≡ 1 (21)

with respect to the flame front and with G < 0 in the unburnt material and
G > 0 in the ashes.

The G-Equation

Follow the path xP of a point P attached to the propagating front in Eulerian
frame of reference. Its motion will obviously be determined by the advection
due to fluid motion and propagation due to burning of the front:

ẋP = vu + sun, (22)

where vu, su and n denote the fluid velocity in the fuel region, the flame prop-
agation speed with respect to the unburnt material, and the normal vector to
the front respectively. The latter will be defined to point towards the unburnt
material by

n = − ∇G

|∇G| , (23)

which becomes possible by fixing G as in Eq. (21).
The value of G on the trajectory of such a point is zero by definition.

Hence the total time derivative of G on the trajectory vanishes:

dG(xP )
dt

=
∂G(xP )

∂t
+ ∇G(xP ) · ẋP := 0. (24)

This condition, together with Eqs. (22) and (23), yields the temporal evo-
lution of G,

∂G

∂t
= −∇G(xP ) · ẋP = − (vu + sun) (−n |∇G|) = (vun + su)|∇G| (25)

for points located on the front. This equation is often termed the “G-equation”
in literature. It bears physical meaning only for points at the front, since su

is undefined elsewhere.
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To apply this formula to the region of fuel and ashes, the velocities have
to be spread out from the front. Since the G-values are relevant only in the
proximity of the flame front, the evaluation can be restricted to a narrow band
around the zero-level set [86].

Re-initialization

Due to the advection of the G-field with the hydrodynamical flow, the signed
distance constraint (21) is usually not conserved. This can cause problems in
simulations, since parts of the G-function may bulge up and artificially appear
as new flames. Thus, additional measures have to be taken in order to preserve
the G-function’s property of being a distance function. One way, according to
[89], is to employ a pseudo time iteration of

∂G

∂τ
=

G

|G| + ε
(1 − |∇G|) , (26)

until convergence to |∇G| = 1 is reached. Values used in our numerical imple-
mentation are Δτ ≈ 0.1Δx and ε ≈ Δx. A particularly efficient alternative
method has been suggested by [1], but this is difficult to parallelize.

The iterative re-initialization algorithm needs to leave the zero-level set
of G unaffected, since otherwise an unphysical shift of the flame front would
occur. Also topological changes of the flame require a correction of the G field.
For a detailed discussion of suitable methods we refer to [68, 70].

Flame/Flow Coupling

In the context of the finite-volume method we apply to discretize the hydrody-
namics, the cells cut by the flame front (“mixed cells” in the following) contain
a mixture of burnt and unburnt states. Therefore the quantity vu needed in
Eq. (25) is not readily available. One strategy to circumvent this problem is
the so-called “passive implementation” of the level-set method [68]. There it
is assumed that the velocity jump is small compared to the laminar burning
velocity and vu is approximated by the average flow velocity. An operator
splitting approach for the time evolution of G (25) yields the advection term
due to the fluid velocity in conservative form which is identical to the advection
equation of a passive scalar. This part can be treated by the PROMETHEUS
implementation of the PPM method. Front propagation, energy release and
species conversion due to burning are performed in an additional step.

An alternative strategy is the “complete implementation” (see [68]). It
was developed by [88] and facilitates the reconstruction of the exact burnt
and unburnt states in mixed cells. On the basis of the jump conditions over
the flame front (see Sect. 2.1) together with geometrical information derived
from the flame intersections with the cell boundaries, a set of equations can
be formulated and solved for the burnt and unburnt states. This allows for
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an accurate treatment of (25). The main advantage is that it now becomes
possible to treat flows of burnt and unburnt material over cell boundaries
separately in the implementation of the fluid dynamics. This prevents the
flame front from smearing out over several cells as it does for the passive
implementation. In this way, the flame front is resolved as a sharp discontinuity
without any mesh refinement (which would lead to very small CFL timesteps).
Unfortunately, it turned out that a three-dimensional implementation of the
reconstruction scheme for burning in degenerate matter is very complicated
and unavoidable discretization errors in the geometrical information lead to
unphysical states in the solution of the system of equations.

Therefore, the passive implementation is applied in large-scale SN Ia sim-
ulations, which provides a reasonable approximation given the small density
contrast over the flame in the degenerate WD material.

3.3 Sub-grid-Scale Model

The Hydrodynamical Equations in the Germano Consistent
Decomposition

The hydrodynamical equations (8, 9, 10 and 11) follow from first principles
(see the chapter “An Introduction to Turbulence”). However, so far we have
ignored the fact that it is infeasible to solve these equations including all
dynamical scales. For this reason, the equations are decomposed into a large-
scale and a fluctuating part. Henceforth, we put an ∞ on top of symbols
corresponding to the exact solution that includes the fluctuations. The nu-
merically computed solution, on the other hand, is interpreted in terms of
filtered quantities, for which fluctuations are smoothed out. In generic form,
we write

q(x, t) =
〈∞
q
〉

G
≡
∫

d3x′ G(x − x′, t)
∞
q (x′, t), (27)

where
∞
q (x, t) is an ideal quantity defined with infinite spatiotemporal reso-

lution and G(x − x′, t) is the kernel of a low-pass filter that smooths out the
fluctuations of

∞
q (x, t) at length scales smaller than a prescribed characteristic

length. For brevity, we use the notation q = 〈∞q 〉eff . It is conjectured that the
numerical discretization of the hydrodynamical equations corresponds to an
implicit filter of characteristic length Δeff ∼ Δ. This is the basic idea of a
large-eddy simulation (LES).

Let us now consider the filtered mass density ρ = 〈∞ρ 〉eff . Assuming that
the implicit filter is homogeneous and independent of time, i.e. the kernel
is a function of |x − x′| only, the operation of filtering commutes with time
derivatives and spatial gradients. Then the smoothed mass density ρ obeys a
conservation law of exactly the same form as the continuity equation for

∞
ρ :

∂

∂t
ρ + ∇ · ρv = 0. (28)
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The conservation law for the momentum density
∞
ρ
∞
v reads

∂

∂t

∞
ρ
∞
v + ∇ · ∞ρ∞

v ⊗ ∞
v =

∞
F , (29)

where the effective force density
∞
F is defined by

∞
F = −∇

∞
P + ∇ · ∞σ +

∞
ρ
∞
g . (30)

The first term on the right-hand side is the pressure gradient, the second
and the third terms are, respectively, the viscous and gravitational force per
unit volume. The viscous dissipation tensor

∞
σ is proportional to the trace-free

part of the rate of strain:

∞
σ ij = 2ν

∞
ρ
∞
S∗

ij = 2ν
∞
ρ

(
∞
S ij −

1
3

∞
dδij

)
, (31)

where ν is the microscopic viscosity of the fluid,

∞
S ij =

1
2

(
∂
∞
v i

∂xj
+

∂
∞
v j

∂xi

)
, (32)

and
∞
d =

∞
S ii is the divergence of the velocity

∞
v .

For compressible flows, it turns out that the momentum equation can
be written in terms of filtered quantities if a Favre filtered velocity field is
introduced:

v =

〈∞
ρ
∞
v
〉

eff〈∞
ρ
〉

eff

. (33)

Favre filtering the conservation law (29), one obtains

∂

∂t

〈∞
ρ
∞
v
〉

eff
+ ∇ ·

〈∞
ρ
∞
v ⊗ ∞

v
〉

eff
= F , (34)

where F = 〈
∞
F 〉eff . Using the identity vρ = 〈∞ρ∞

v 〉eff , which follows immediately
form definition (33), and substituting

〈∞
ρ
∞
v ⊗ ∞

v
〉

eff
= ρv ⊗ v − τ

(∞
ρ
∞
v ,

∞
v
)
,

equation (34) becomes

∂

∂t
ρv + ∇ · ρv ⊗ v = F + ∇ · τ

(∞
ρ
∞
v ,

∞
v
)
. (35)

Defining the filtered pressure P = 〈
∞
P 〉eff and the Favre filtered gravity

g = 〈∞ρ∞
g 〉eff/ρ, we have
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∂

∂t
ρv + ∇ · ρv ⊗ v = −∇P + ρg + ∇ ·

(〈∞
σ
〉

eff
+ τ

(∞
ρ
∞
v ,

∞
v
))

. (36)

Note that all terms in this equation are expressed in terms of computable
filtered quantities except for the divergence of the filtered viscous dissipation
tensor and the generalized turbulence stress tensor

τ
(∞
ρ
∞
v ,

∞
v
)

= −
〈∞
ρ
∞
v ⊗ ∞

v
〉

eff
+ ρv ⊗ v. (37)

This tensor is a generalization of the second moment of the velocity fluc-
tuations in Reynolds-stress models of turbulence. The notion of a generalized
turbulence stress was introduced by Germano [25] for incompressible fluids.
If the Mach numbers are smaller than unity, it is still reasonable to use the
order of magnitude estimate τ(

∞
ρ
∞
v ,

∞
v ) ∼ ρv′2, where v′ =

∞
v −v. In this case,

the velocity fluctuations obey the 2/3-law, i.e. v′2 ∼ ε2/3Δ2/3, where ε is the
rate of viscous energy dissipation [18]. On the other hand, with the definition
of the Kolmogorov scale η = (ν3/ε)1/4, it follows that

〈∞
σ
〉

eff
= 2ν 〈ρS∗〉eff ∼

(
η4ε
)1/3

ρ(εΔ)1/3/Δ ∼ ρε2/3η4/3Δ−2/3.

Thus, the magnitude of the viscous dissipation tensor scales with (η/Δ)4/3

relative to the turbulence stress tensor. For this reason, viscous dissipation
will become negligible at the level of the filtered momentum equation for a
sufficiently large numerical cutoff scale in comparison to the length scale of
viscous dissipation. Since this criterion applies in virtually all LES, we can
express the filtered momentum equation as

∂

∂t
ρv + ∇ · ρv ⊗ v = −∇P + ρg + ∇ · τ

(∞
ρ
∞
v ,

∞
v
)
. (38)

Scalar multiplication of the momentum equation with the velocity v yields
the dynamical equation for the resolved kinetic energy density, Kres = 1

2ρ|v|2:

∂

∂t
Kres + ∇ · ρvKres = v ·

[
F + ∇ · τ

(∞
ρ
∞
v ,

∞
v
)]

. (39)

In addition to the above equation, a conservation law for the total en-
ergy density Etot = Eint + Kres associated with the resolved scales can be
obtained [84].

The difference between the filtered kinetic energy, K = 1
2 〈

∞
ρ |∞v |2〉eff and

Kres is called the sub-grid scale turbulence energy Ksgs. It is related to the
trace of the turbulence stress tensor:

Ksgs = −1
2
Tr τ

(∞
ρ
∞
v ,

∞
v
)

=
1
2

(〈∞
ρ |∞v |2

〉

eff
− ρ|v|2

)
. (40)

The corresponding velocity scale is qsgs =
√

2Ksgs/ρ. The derivation of
the conservation law for Ksgs is somewhat more involved [84]. Here we only
state the result:
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∂

∂t
Ksgs + ∇ · ρvKsgs − D = Γ + Σ − ρ(λ + ε), (41)

where the source contributions on the right-hand side are

Γ =
〈∞
ρ ,

∞
v i

∞
g i

〉

eff
− ρvigi, (42)

Σ = τijSij , (43)

ρλ = −
〈

∞
d
∞
P

〉

eff

+ dP, (44)

ρε =
〈

∞
ν
∞
ρ |

∞
S∗|2

〉

eff

. (45)

The nonlocal transport term D is given by

D =
∂

∂xi

[
1
2
τijj + μi

]
, (46)

where the generalized moment

μ = −
〈

∞
v

∞
P

〉

G

+ vP. (47)

accounts for the transport of turbulence energy due to pressure fluctuations.
The dynamical equations (39) and (41) constitute the Germano consistent

decomposition of the kinetic energy budget. In order to close the equations,
several modelling assumptions for the terms depending on nonfiltered quan-
tities have to be made. In the following, we will discuss only a subset of these
closures. For a complete account of the SGS model, see [84] and [85].

Closures for the Production of Turbulence Energy

There are two different sources of SGS turbulence production. First, the SGS
buoyancy term Γsgs (42) and second, the rate of energy transfer Σsgs = τijSij

across the length scale Δeff due to nonlinear turbulent interactions. With
regard to simulations of SNe Ia, there has been a lively controversy whether
buoyancy effects or the energy transfer dominates the production of turbulence
energy on unresolved scales.

A simple scaling argument can be invoked in favour of the dominance of
turbulent energy transfer [48]. According to the Kolmogorov theory, the root
mean square turbulent velocity fluctuations obey the scaling law v′(l) ∝ l1/3

[18]. On the other hand, the Sharp–Wheeler relation for the velocity scale
associated with the RT instability implies vRT(l) ∝ l1/2 [87]. As a consequence,
we have vRT(l)/v′(l) ∝ l1/6 → 0 towards decreasing length scales.

Of course, both scaling laws are based on assumptions that do not nec-
essarily hold in the course of a supernova explosion. For this reason, [85]
attempted to include both effects in the SGS model.
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The Localized Eddy-Viscosity Closure

The most commonly used closure for the the trace-free part of the SGS tur-
bulence stress tensor,

τ∗ij = τij −
1
3
τiiδij = τij +

2
3
Ksgsδij , (48)

is formulated analogous to the viscous stress tensor in a Newtonian fluid [64]:

τ∗ij � 2ρνsgsS
∗
ij = 2ρνsgs

(
Sij −

1
3
dδij

)
. (49)

Hence, the microscopic viscosity ν in the fully resolved equation (29) is
effectively replaced by an eddy-viscosity νsgs in the filtered equation (38).

A dimensional ansatz for the eddy-viscosity is to set νsgs proportional to
the product of the effective cutoff length Δeff and the characteristic velocity
of SGS turbulence, i.e. k1/2

sgs [64, 80]:

νsgs � CνΔeffk
1/2
sgs . (50)

The coefficient Cν is the unknown closure parameter of the model. Although
the mean value of Cν can be estimated from approximate theories or numerical
simulations of isotropic turbulence, substantial local deviations from the mean
are expected to occur in nonstationary and inhomogeneous flows.

This problem was tackled with the advent of dynamical procedures [26].
The basic idea of a dynamical procedure is the local determination of Cν

from structural properties of the numerically computed flow on the smallest
resolved length scales. To that end a test filter of characteristic length ΔT =
γTΔeff is introduced. The test filter probes velocity fluctuations within the
small range of length scales between Δeff and γTΔeff , where the ratio of filter
lengths, γT, is typically chosen in the range from about 1.5–4. For PPM,
γT ≈ 3.75 has turned out to be optimal [81].

The turbulence stress of the velocity fluctuations smoothed out by the test
filter is given by

τT(ρv,v) = −〈ρv ⊗ v〉T + ρ(T)v(T) ⊗ v(T), (51)

where ρ(T) = 〈ρ〉T and v(T) = 〈ρv〉T/〈ρ〉T. Note that the right-hand side of
equation (51) can be evaluated completely from the numerically computed
variables ρ and v. Following [34], we apply the eddy-viscosity closure to
τT(ρv,v), i.e.

τT(ρvi, vk) = ρTCνΔTk
1/2
T S

∗ (T)
ik . (52)

Here kT is given by ρTkT = − 1
2τT(ρvi, vi) and S

(T)
ik is the symmetrized

Jacobian matrix of v(T).
Contracting the closure (52) with S

(T)
ik , a scalar equation that determines

Cν is obtained:
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Cν =
τ∗T(vi, vk)S(T)

ik

ρTΔTk
1/2
T |S∗ (T)|2

. (53)

Since turbulence tends to become asymptotically self-similar towards smaller
scales, one can substitute the local value of Cν calculated from Eq. (53) into
the eddy-viscosity closure (48) for the SGS turbulence stress. Therefore, the
outcome of the dynamical procedure in the form proposed by Kim et al. [34] is

1
ρ
Σsgs +

2
3
ksgsd � τ∗T(vi, vk)S(T)

ik

γTρT

|S∗|2
|S∗ (T)|2

√
ksgs

kT
. (54)

Note that ksgs = Ksgs/ρ is the SGS turbulence energy per unit mass.
Using flow realizations from direct numerical simulations of isotropic tur-

bulence, we performed a priori tests of the localized eddy-viscosity closure
[84]. The results indicate a more accurate prediction of the rate of energy
transfer if the dynamical procedure for calculating Cν rather than a statisti-
cal value is applied. The performance of the localized SGS model in LES of
turbulent burning in a periodic box appeared promising as well [81]. In those
simulations, two simplifications were made: first, the turbulence stress term in
the momentum equation (38) was neglected due to the numerical dissipation
of PPM (also see [82]). The SGS model was still coupled to the resolved flow
via the energy budget and, particularly, the turbulent flame speed relation.
Second, the inverse energy transfer for Cν < 0 was suppressed, because, in
combination with PPM, this so-called backscattering would produce spurious
energy dissipation [81].

Archimedian Production

Given the definition (42) of SGS buoyancy, it is rather difficult to come up
with a physically sensible closure. In general, correlations between fluctua-
tions of the velocity and the gravitational potential have to be taken into
account. In thermonuclear supernovae, self-gravity is not significant on small
scales. However, the density contrast between burnt material and nuclear fuel,
respectively, induces convective motions due to the RT instability in the bulk
gravitational field of the exploding star. The lower threshold for the growth
of RT instabilities is given by the fire polishing length λfp defined by equa-
tion (15), which can be identified with the Gibson length lG in the case of
developed turbulence. In LES of thermonuclear supernovae, both lG and λfp

are small compared to the numerical resolution Δeff , except in the late stage
of the burning process.

The Archimedian force per unit mass generated by the RT instability can
be written as

geff = At g, (55)

where the density contrast between fuel and burnt material is specified by the
Atwood number
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At =
ρf − ρb

ρf + ρb
. (56)

Combining the acceleration geff with the characteristic magnitude of un-
resolved velocity fluctuations, yields a tentative closure for SGS buoyancy:

Γsgs =
1√
2
CAρgeffqsgs. (57)

In order to constrain the contributions from SGS buoyancy to the vicinity
of flame fronts, we use the following definition:

geff = χ±δ(G = 0)θ(Δ− λfp)At g, (58)

where χ±nΔ(G = 0) is the characteristic function of all cells for which the
distance from the flame front (represented by G(x, t) = 0) is less than δ, and
θ is the Heaviside step function, i.e. θ(Δ − λfp) = 1 for Δ > λfp and zero
otherwise. The Atwood number is calculated by fitting tabulated numerical
data [84, 91].

An indication in support of closure (57) is the asymptotics obtained in
the limiting case of a stationary and homogeneous distribution of SGS tur-
bulence energy. Neglecting nonlocal transport, turbulent energy transfer and
compression effects, the dynamical equation (41) becomes

d
dt

qsgs �
1√
2
CAgeff −

q2
sgs

�ε
. (59)

for a fluid parcel in the vicinity of the flame front. Assuming equilibrium, this
equation has the fixed point solution

qsgs �
√

2CAΔeffgeff

Cε
= vRT(Δeff). (60)

Setting CA = Cε/8, this is just the Sharp–Wheeler relation vRT(l) =
0.5

√
lgeff for the characteristic velocity of the RT instability on length scales

� ∼ Δeff . Since Cε ≈ 0.5 . . . 1.0 for developed turbulence [81], we conclude
that CA ≈ 0.1.

4 Numerical Simulations

4.1 Full-Star Supernova Explosion Simulations

Snapshots from a full-star supernova simulation performed in the modelling
approach described above are shown in Fig. 3, where the logarithm of the
density is volume rendered and the zero-level set of the G-field (associated
with the flame front) is indicated by the blue isosurface. In this simulation,
the WD star was constructed by choosing a central density of 2.9×109 g cm−3
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Fig. 3. Thermonuclear supernova explosion simulation

and a composition of equal parts of carbon and oxygen. Since the modelled
description of flame propagation does not depend on the temperature, and,
due to the high degeneracy of the material, its effect on the WD’s structure is
marginal, a cold WD (T = 5× 105 K) was set up by integrating the equations
of hydrostatic equilibrium in one dimension and mapping the obtained density
profile to the grid. Since the equation of state applied in the WD setup is the
same as used in the explosion simulation, this procedure provides sufficient
stability of the WD over the time simulated ([70]).

The flame was started in a large number of spherical ignition spots within
the first 180 km from the centre of the WD star (cf. upper left snapshot of
Fig. 3 and close-up of the ignition region).

Shortly after ignition the bubbles assume a “mushroom-cap”-like structure
due to the effect of the buoyancy instability. The complicated and disordered
flow field establishing in the burning region quickly leads to merging of the
small bubbles so that a connected flame surface emerges. This flame is wrin-
kled on large scales by the RT instability and interacts with the turbulence
generated (cf. upper right snapshot of Fig. 3). This interaction is modelled
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by the sub-grid-scale model and will be discussed in detail in Sect. 4.2. The
energy release in nuclear burning expands the star as indicated by the scales
given in Fig. 3.

The lower left snapshot of Fig. 3 was taken 3.0 s after ignition and corre-
sponds to an evolution stage where burning ceases because of the expansional
decrease of density. Consequently, the zero-level set of G has no physical mean-
ing anymore, but still indicates an approximate interface between left-over fuel
and ashes. As visible in the snapshot, burnt material reaches out to the surface
of the WD.

Due to the energy release in the burning process, the remnant, whose den-
sity is shown in the lower right corner of Fig. 3 is no longer gravitationally
bound and continues expansion. About 10 s after ignition, this expansion pro-
ceeds in a homologous way to a good approximation (see [72]), i.e. the velocity
of a fluid element is proportional to its radius.

Photons leave the remnant only at much later times when the medium
becomes less dense and the outer layers get optically thin. Therefore, the
homologous expansion reached in the late stages of the explosion simulation
is scaled to these times and (together with the results of the nucleosynthesis
postprocessing) serves as input for the derivation of observable quantities such
as spectra and light curves. These can then be compared to observations and
ultimately provide a way to validate the explosion model (see Sect. 5).

4.2 Sub-grid-Scale Dynamics

For the numerical computation of the SGS turbulent velocity qsgs, the conser-
vation law (41) for Ksgs = 1

2ρq
2
sgs is divided by ρqsgs. Upon substituting the

closures described in Sect. 3.3 and in [84], respectively, the following dynam-
ical equation is obtained:

(
∂

∂t
+ v · ∇

)
qsgs−

1
ρ
∇ · (ρ�κqsgs∇qsgs) − �κ|∇qsgs|2

=
1√
2
CAgeff + �ν |S∗|2 − 7

30
qsgsd−

q2
sgs

�ε
.

(61)

The characteristic length scales �κ, �ν and �ε are related to SGS turbulent
transport, the rate of energy transfer from resolved towards sub-grid scales
and the rate of viscous dissipation. Each characteristic length can be expressed
in terms of the effective cutoff length Δeff and a similarity parameter:

�ν =
CνΔeff√

2
, �ε =

2
√

2Δeff

Cε
, �κ =

CκΔeff√
2

. (62)

Due to the dissipative effects of this numerical scheme on the smallest
resolved length scales, we set Δeff ≈ 1.6Δ [82]. The dynamical calculation of
the closure parameters Cν is outlined in Sect. 3.3. For the determination of
Cε and Cκ, see [84].
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Fig. 4. Contour sections showing the contributions to the evolution of the SGS
turbulent velocity qsgs given by Eq. (61) at t = 0.3 s. Only the inner region of the
numerical grid with N = 3843 cells is shown. The white contours represent the
sections through the flame surface

Two-dimensional spatial sections at subsequent instants of time in a sim-
ulation with N = 3843 grid cells are shown in Figs. 4 and 5. In each figure,
the following dynamical terms of equation (61) are plotted:

1. Rate of production caused by strain, �ν |S∗|2 (left top panel).
2. Specific Archimedian force 0.1geff (right top panel).
3. Rate of dissipation − 7

30qsgsd− q2
sgs/�ε (left bottom panel).

4. Rate of diffusion 1
ρ∇ · (ρ�κqsgs∇qsgs) − �κ|∇qsgs|2 (right bottom panel).

Note that these quantities have the dimension of acceleration. The flame sur-
face as given by the zero-level set is indicated by the contours in white. Figure 4
shows the typical Rayleigh–Taylor mushroom shapes which have formed out
of initially axisymmetric sinusoidal perturbations at time t = 0.3 s. Significant
energy transfer is concentrated in small regions and there is little dissipation
yet. At t = 0.45 s, the rate of energy transfer has reached its maximum and
is spread all over the interior of the flames (see Fig. 5). The SGS buoyancy is
typically by an order of a magnitude smaller. Both dissipation and transport
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Fig. 5. The same plot as in Fig. 4 at t = 0.45 s

due to SGS turbulent diffusion are comparable to the rate of energy transfer
at this time. In the unburnt material outside, on the other hand, there is still
virtually no SGS turbulence. Thus, it appears that the flow is anisotropic in
the vicinity of the flames. This highlights the necessity of a localized SGS
model. We have utilized this behaviour by restricting SGS turbulence pro-
duction to the equidistant part of the grid. A uniform cell size allows for an
efficient parallelization.

In comparison to the SGS model that was used in earlier simulations of
thermonuclear supernovae [48], the localized model increases the yield of nu-
clear energy significantly. This is demonstrated by the graphs of the inte-
grated total energy in the left top panel of Fig. 6. The final kinetic energy
of 0.472 · 1051 erg = 4.72 · 1043 J in the simulation with the localized SGS
model is about 25% greater than in the reference simulation with the old
model (WPF). The total amount of burning products increases noticeably as
well. We also plotted the outcome of suppressing Archimedian production.
Although slightly less energy is produced, the burning process is still sig-
nificantly enhanced due to the localized energy transfer. In the simulations
with the localized SGS model, there is initially only little SGS turbulence
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Fig. 6. Time evolution of integrated quantities for three simulations with identical
initial conditions and resolution 2563. In one case, Clement’s SGS model with wall
proximity functions (WPF) was used. For the other two simulations we applied the
localized SGS model with Archimedian production, respectively, switched off and on

energy followed by a steep rise. The rapid growth of turbulence energy can
be attributed to the substantially stronger production within the time inter-
val from 0.3 to 1.0 s (see right bottom panel in Fig. 6). In the second half of
the explosive burning, the total SGS turbulence energy is almost one order
of magnitude larger, which enhances the flame propagation speed accordingly
and results in a stronger explosion.

4.3 Complementary Small-Scale Simulations

In addition to simulations on the scales of the WD, complementary studies
are necessary to validate the modelling assumptions entering here.

As mentioned in Sect. 2.2, one-dimensional simulations of the fully re-
solved laminar thermonuclear flame [90] provided the laminar flame speed as
a function of fuel composition and density, which sets the lower limit in the
supernova simulations.
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Several studies addressed the multi-dimensional flame structure on small
scales. In particular, below the Gibson scale flame propagation is not dom-
inated by turbulence but by the LD instability (see Sect. 2.3). From first
simulations [47] and semi-analytical models [6] it appeared unclear if the non-
linear stabilization of the flame in a cellular structure would hold also at low
fuel densities, and “self-turbulization” (also named “active turbulent combus-
tion”) has been suggested [51]. With the level-set based flame model (here
in the full implementation to model the flame/flow interaction correctly), the
stabilization could be shown to be effective under the conditions of SN Ia
explosions [76, 77, 79]. Similar results were obtained with resolved flame sim-
ulations applying a low-Mach number hydrodynamics solver [4].

At the current stage, these complementary simulations provide confidence,
that the flame propagation on scales not resolved in global SN Ia supernova
simulations is adequately modelled and flame propagation proceeds in a stable
way.

5 Conclusion

Numerical simulations of SN Ia explosions can be regarded as a challenging
test case for advanced models of turbulent fluid dynamics and combustion
physics. In the model we have presented, there are two essential ingredients:
first, the level-set prescription for the propagation of flame fronts and second,
a sub-grid scale model for the computation of the turbulent flame propagation
speed. The level-set method combines the advantages of its ability to handle
complex topologies and avoiding artificial diffusion. The sub-grid scale model
is particularly suitable for a highly inhomogeneous and transient process such
as a supernova explosion, because the localized closure for the production
of turbulence energy does not rely on a priori assumptions about flow prop-
erties. In addition, we proposed to include unresolved buoyancy effects in a
tentative way. Further parameters of the sub-grid scale model are treated in a
semi-statistical fashion or were calibrated with data from separate numerical
studies [81].

The described modelling approach leads to a self-consistent picture of
turbulent deflagrations in SNe Ia. Therefore, the deflagration stage can be
regarded as well represented in the simulations and the results of such simu-
lations can be directly confronted to observations. In this way it is possible to
address the question of whether the modelling concept reflects reality and of
whether the astrophysical scenario is complete.

To begin with there is no doubt that pure turbulent deflagration scenar-
ios are capable of producing a viable explosion of the WD star [21, 69, 74].
However, the outcome is sensitive to the ignition configuration and a failure
to gravitationally unbind the star may arise in some setups [42, 62].

A first check of the models is provided by the global quantities. The energy
released in the (exploding) models – typically up to 8 × 1050 erg – falls into
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the range of observational expectations for “normal” SNe Ia [9], although on
the side of the weaker objects. The brightness of a SN Ia is determined by
the amount of radioactive 56Ni, one of the main products of the explosive
nuclear burning. This unstable isotope decays to 56Co and ultimately to 56Fe
and the released gamma photons are downscattered in the explosion ejecta
finally giving rise to the observable event. Typically, the deflagration models
produce around 0.4M� of 56Ni, but this may vary depending on the ignition
conditions of the flame ([22, 78, 83]).

Synthetic lightcurves derived from explosion models ([5]) show reasonable
agreement with the observations (cf. Fig. 7) This leads to the conclusion, that
at least weaker SNe Ia can be well reproduced by the turbulent deflagration
model. However, a potential problem arises in spectral features. Late time
spectra show indication of unburnt material in the central parts of the ejecta,
which disagrees with observations [35]. Also the very strong supernova events
(producing more than one M� of iron group elements) remain a puzzle. It
has been suggested, that a transition of the flame propagation mode from
deflagration to detonation in later stages of the explosion could solve some
of these issues [20, 31, 33]. A mechanism providing such a transition in ther-
monuclear supernovae, however, could not be identified yet [46] and therefore,
this scenario remains hypothetical.

Fig. 7. Synthetic light curves in the B and V band derived from an explosion model
in comparison with observations of SN1994D [5]. Roughly speaking, B and V are
logarithmic measures of colours. A more negative value of B, for instance, implies a
brighter appearance of the event in blue light
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Nonetheless, the success of the pure turbulent deflagration scenario repro-
ducing at least gross features of some SNe Ia indicates that it captures main
aspects of the explosion mechanism. Further steps involve the exploration of
different initial conditions of the WD star, possibly explaining the diversity
observed in SNe Ia [73]. This is of fundamental interest for the cosmological
application of SNe Ia, since their use as distance indicators relies on methods
of calibrating these diversities [61].

In any case, we have been confronted with the most challenging aspects
of turbulence modelling in numerical simulations of SNe Ia: reactive fluid
dynamics that is neither stationary nor homogeneous, a nonideal equation of
state and turbulence at extremely high Reynolds numbers. The insights that
have resulted so far are of considerable worth in their own right. An example
is the prospect of adopting the localized sub-grid scale model to adaptive
methods. This might very well trigger new exciting developments in the field
of astrophysical fluid dynamics.
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1 A New Modelling Paradigm

1.1 Motivation

The historical roots of the current paradigm for numerical simulation of tur-
bulent flows can be traced to early attempts at weather prediction. The mesh
that is used is typically far too coarse to resolve all relevant processes, so
sub-grid parameterizations are introduced to represent unresolved processes
and their coupling to the resolved flow.

This approach has been successful in many contexts, enabling useful pre-
dictions of the unresolved processes as well as the resolved flow. However, as
computing power increases and expectations of model performance increase
commensurately, it is not self-evident that this paradigm will continue to
be the optimal choice for all cases of interest. A particular challenge that is
emphasized here is turbulent flow coupled to multiple physical and chemical
processes at small scales.

Several recent developments in numerical flow simulation suggest the emer-
gence of an alternate paradigm, here termed ‘autonomous microstructure evo-
lution’ (AME). In Sect. 1.2, this paradigm is introduced by describing several
methods of this type. The focus of this chapter is the proposal of a new AME-
type method for simulation of turbulent flows that is based on a stochastic
model, ‘one-dimensional turbulence’ (ODT).

After introducing the AME paradigm, its desirable attributes from the
perspective of turbulence modelling are outlined in Sect. 2. The remainder of
the chapter describes the proposed simulation method.

1.2 Autonomous Microstructure Evolution

At the molecular level, viscous fluid flow is strictly a local process. Molecu-
lar collisions are the elementary mechanism of momentum and heat transfer,
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and they likewise control mass transfer, flow energetics and chemical change
in reacting flows. This is recognized in derivations of the continuum equa-
tions of fluid flow (e.g. the Navier–Stokes equation) from kinetic theory using
elementary statistical hypotheses (e.g. the Boltzmann chaos assumption).

Accordingly, the continuum equations governing compressible fluid flow
are local in nature. However, in low-Mach-number flows (Ma � 1), the sound
speed becomes irrelevant to the dominant flow processes and it is physically
more appropriate, and computationally more efficient, to adopt an incom-
pressible formulation. This formulation treats the sound speed as effectively
infinite and thereby allows flow evolution to be represented as an elliptic prob-
lem, in which all fluid elements and constraints (e.g. boundary conditions) are
coupled instantaneously.

At this level of description, it is entirely appropriate, and generally quite
advantageous, to dispense with the local character of the physical processes
that govern low-Ma flow evolution. However, there is an alternative, local
formulation that is sometimes advantageous at low Ma, called the pseudo-
compressible formulation [1]. In this formulation, an artificially low sound
speed is introduced in order to reduce the time-scale disparity between acous-
tic and solenoidal flow processes, thus mitigating the severe time-step con-
straints for compressible-flow time advancement at low Ma.

To summarize, the continuum-level governing equations need not obey
locality in order to capture the governing physics at low Ma, although a local
formulation may be a viable option. These considerations provide a useful
context for defining and illustrating the AME paradigm.

The most direct way to simulate fluid flow is to remain as faithful as
possible to its occurrence in nature, i.e. by simulating the underlying molecular
motions and interactions. The most common and successful method of this
type is ‘molecular dynamics’ (MD) [2, 3], whose virtue in this regard is that
it captures noncontinuum effects when they are important, as well as flow
evolution describable by continuum methods.

MD in this context is a direct molecular simulation, subject to idealization
of molecular collision processes, e.g. through the adoption of a molecular pair
potential. However, the MD concept has been generalized through the de-
velopment of models in which computational molecules are pseudo-particles.
Their properties and interactions are defined so that macroscopic flows can
be simulated using much fewer than Avogadro’s number of particles. Exam-
ples of this approach are ‘smoothed particle hydrodynamics’ (SPH) [3] and
‘dissipative particle dynamics’ (DPD) [4]. Another method of this type is
‘lattice-gas hydrodynamics’ (LGH) [5], whose distinguishing feature is that
it is designed to yield controlled (i.e. arbitrarily accurate) approximations to
the continuum governing equations although the particles do not represent
physical molecules.

The common feature of the methods described thus far, and the method
proposed here, is that a representation, exact or idealized, of small scale pro-
cesses is adopted that yields, through process evolution, collective behaviours
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that correspond to continuum flow, with varying degrees of accuracy. This is
the defining feature of the AME paradigm in the context of flow simulation.

Another AME-type method, the ‘lattice Boltzmann model’ (LBM) [5], il-
lustrates that these methods are not exclusively particle-based. LBM evolves
probability density functions (PDFs) of particle properties rather than parti-
cles per se. It thus retains a link to particle properties though particles are not
explicit within the method. In this regard it may be viewed as intermediate
between particle and continuum methods. Another notable feature of LBM is
that turbulence modelling has been incorporated into the LBM framework [5].

The link between LBM evolution and the implied particle evolution can
be formalized by noting that evolution of a PDF represents the ensemble
evolution of a collection of particles governed by coupled stochastic differ-
ential equations (SDEs). In this context, the latter is a more detailed level
of description from which the former can be deduced. However, in a class of
turbulent flow models, the relationship is reversed. An unclosed hierarchy of
evolution equations for the PDF of flow properties in turbulence can be closed
by modelling to obtain a single-point evolution equation for the joint PDF of
velocity and scalar fields [6]. Though elliptic in character in its usual low-Ma
formulation, it can be solved using an algorithm of AME type. Namely, par-
ticle SDEs are formulated whose details, apart from the conformance of their
ensemble properties to the PDF evolution equation, need not be physically
realistic. These SDEs are solely numerical devices for efficient solution of the
PDF evolution equation. In this sense, they are analogous to LGH, in which
particle evolution is strictly a device for solving continuum equations, albeit
the exact equations in that case.

The foregoing AME-type methods, whether used as complete (particle
through continuum regime) flow simulations (e.g. MD), as numerical devices
for solving exact or modelled continuum equations, or as models in their own
right, are all explicitly or implicitly particle based. The AME paradigm also
accommodates processes rather than particles as its primitive elements. A no-
table example is vortex dynamics (VD) [7], which in its two-dimensional (2D)
implementation evolves discrete point vortices or vortex blobs. (In 3D, vortex
filaments, arrows and particles have been used [7–9].) The Biot–Savart equa-
tion that couples the discrete elements is nonlocal, illustrating that the AME
paradigm is not limited to local interactions. Vortex dynamics is generally
applied to low-Ma flow, and captures the nonlocality of that flow regime in a
natural way. In 2D flow, the large-scale organization of vorticity is elegantly
reproduced by discrete-vortex simulations. To represent unresolved motions in
VD simulations of turbulence, vortex blobs can execute random walks and/or
undergo evolution of their internal structure (vorticity profile).

The formulation proposed here is akin to VD in that its primitive elements
are processes rather than particles, and as in VD, a process represented in this
manner introduces some form of nonlocality. As in VD, the primitive elements
are associated with vortical motion, but unlike the discrete vortices of VD,
they represent the outcome of vortical motion rather than vortices per se.
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Closely related to this distinction is the key attribute of the primitive elements
introduced here: they are processes implemented on a 1D spatial domain.

2 Implications for Turbulent Flow Modelling

2.1 Large-Eddy Simulation: Capabilities and Limitations

The motivation for adopting the AME paradigm for turbulent flow modelling,
and implications concerning the structure of such a model, are now considered.
These questions are addressed by first examining the conventional paradigm
outlined in Sect. 1.1.

Specifically, consider ‘large-eddy simulation’ (LES) of constant-property
flow. The LES strategy is to resolve scales far enough below the flow-dependent
energy-containing scales so that the unresolved motions are within the inertial
subrange, whose properties are presumed to be universal [10]. Moreover, the
main role of the unresolved motions is presumed to be cascading of mesh-
resolved kinetic energy to smaller, unresolved scales. This is represented within
LES by dissipation of mesh-resolved kinetic energy, at a rate commensurate
with the cascading mechanism. The dissipation is typically incorporated using
eddy viscosity, or a generalization thereof (tensor viscosity, spectral viscosity,
etc.) [10].

Though this strategy has proven to be quite successful thus far and holds
great promise for the future, it is subject to two types of limitations that
motivate consideration of an alternative approach. One type of limitation is
generic to all applications of this strategy, while the other type is flow specific.

The generic limitations are associated with the LES representation of cas-
cade physics. Intermittency of the turbulent cascade [11] has several conse-
quences whose representation within LES is not yet fully satisfactory. One is
backscatter of kinetic energy from unresolved to resolved scales. Modelling of
backscatter within LES is an active research topic, and there has been useful
progress in this regard [10]. Another is a spectrally nonlocal contribution to
downscale (forward cascade) energy transfer. Spectral viscosity methods can
account for this, but are not necessarily advantageous or practical from other
viewpoints. Intermittency effects depend on the turbulence Reynolds number
Re in a manner that has not yet been convincingly captured as LES is applied
to flows at successively higher Re [12].

Apart from these physics concerns, there is the practical concern of devis-
ing an LES closure that is numerically robust within the time advancement
of a nonsmooth discretized velocity field as well as physically sound. There is
room for improvement in this regard as well.

These limitations arise in the context of applications that satisfy the basic
axiom of the LES strategy: mesh refinement sufficient to resolve flow-specific
phenomena. There are (at least) two classes of applications that challenge this
axiom: wall-bounded flows and flows coupled to dissipation-scale processes.
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In wall-bounded flows, the scale of near-wall flow-specific phenomena is
proportional to distance from the wall, hence decreases as the wall is ap-
proached, until the viscous sublayer is reached. This requires refinement to
full flow resolution, in effect, direct numerical simulation (DNS), near walls
in order to maintain fidelity consistent with the LES strategy. Though costly,
this near-wall refinement may be feasible for some applications. In general,
however, the cost of this approach is prohibitive, so instead, near-wall pa-
rameterizations are introduced. The consequences of introducing parameter-
izations are considered shortly, after other examples of parameterization are
noted.

Those examples are parameterizations that represent the coupling of unre-
solved flow scales to dissipation-scale (or in general, sub-grid-scale) processes,
such as thermodynamic fluctuations (in compressible flow), mixing of dynam-
ically active scalars (e.g. density in buoyant variable-density flow), chemical
reactions (including heat-release effects on density and hence on the flow field),
and multiphase couplings. Multiphase couplings include diverse phenomena
such as momentum, heat, and mass transfer between dispersed and continuum
phases, and surface tension at interfaces between immiscible liquids.

The limitations of parameterizations of these coupled, highly nonlinear,
multivariate, spatially distributed processes are well known and are not elab-
orated here. Certainly, they are at least as challenging as the parameterization
of near-wall constant-property flow, so the latter is examined to illustrate the
difficulties that can arise.

In near-wall flow, an obvious modelling concern is prediction of separa-
tion and reattachment. One mitigating factor in an LES formulation is that
adaptive meshing can resolve the vicinities of separation and reattachment
loci along a wall at much less cost than resolving the entire near-wall flow. An
application that is less amenable to adaptive meshing is near-wall flow subject
to transient bulk forcing. An example is near-surface flow in the atmospheric
boundary layer (ABL) subject to shifts of wind speed and direction. The time-
lagged response of the near-wall flow to this transient forcing can, for exam-
ple, result in nonmonotonic wall-normal profiles of ensemble-averaged velocity
components, and related flow-specific features, that defy representation by a
parameterization. (Another canonical example of near-wall nonmonotonicity
is buoyancy-driven flow near a heated vertical wall [13].)

This considerations point inexorably to the conclusion that parameteri-
zation of unresolved flow-specific phenomena, in contradiction of the axiom
underlying the LES modelling strategy, imposes inherent limitations on the
breadth and accuracy of predictive capability that this strategy can ultimately
achieve. Within the scope of these limitations, much can and will be accom-
plished. Nevertheless, it is apparent that there is a compelling fundamental
as well as practical imperative to pursue alternate strategies that might not
be subject to these limitations.
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2.2 An Alternative to Parameterization

It is useful to define what is meant by parameterization in order to delineate a
possible alternative. Here, a broad definition is adopted. Namely, a parameter-
ization is any mathematical construct associated with a mesh control volume
(or more generally, a localized stencil of control volumes) that exchanges in-
formation during the simulation only with values of mesh-resolved variables
in that control volume (or stencil). This definition includes some formula-
tions that are termed ‘dynamically active’ LES sub-grid models [10]. Here,
the distinguishing feature is taken to be the nature of the communication
among modules (i.e. the flow solver and the parameterization) rather than
the internal content of the parameterization.

This definition is adopted because it addresses the strategy of devising
better parameterizations. One can in principle improve the parameterization
to the point of performing DNS within each control volume. Nevertheless, this
is not equivalent to DNS of the whole flow if the information exchange between
control volumes is based solely on mesh-resolved variables. This restricted
information exchange introduces an inherent information loss that does not
occur in whole-flow DNS.

In this regard, it is useful to compare constant-property LES of unbounded
flow to the more challenging cases discussed in Sect. 2.1. The downscale infor-
mation transfer in LES is straightforward in principle because it involves the
loss of information (about flow structure whose scale is compressed below the
resolution scale) that is no longer needed in the simulation (if only the forward
cascade is considered). The upscale information transfer is a more delicate is-
sue because it requires retention of sub-grid-scale information (e.g. by using a
parameterization) that is sufficient to characterize backscatter through trans-
fer of this information to the resolved variables. On this basis, upscale transfer
is generally viewed as a more challenging modelling problem than downscale
transfer.

Compare this to the modelling requirements for more complicated flows
(variable property, chemically reacting, etc.), supposing in these cases that
an elaborate, accurate parameterization is available. For quantities such as
chemical species in a reacting flow, the upscale information transfer may con-
sist of a straightforward averaging or spatial filtering procedure. However,
the downscale information transfer may require, for example, adjustment of
small-scale species concentrations resolved by the parameterization, where the
adjustment is based on spatially filtered information at the mesh scale. This
adjustment can be problematic with regard to either realizability (e.g. causing
mass fractions to be negative or exceed unity) or chemical consistency (e.g.
creating spurious nonequilibrium mixtures).

Thus, as sub-grid parameterizations become more elaborate in order to
address increasingly complex problems, the fidelity of the overall formulation
may be constrained, to an increasing degree, by the sparse information con-
tent (relative to the sub-grid formulation) at mesh-resolved scales. It can be
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anticipated that this problematic downscale information transfer will prove to
be the most enduring constraint on the ultimate utility of parameterization,
as broadly defined here.

Accordingly, the basic axiom that guides the present pursuit of a better
alternative is that parameterization requiring downscale information trans-
fer should play a minimal role, if any. AME, as defined and exemplified in
Sect. 1.2, is precisely the paradigm that adheres to this principle.

Adopting the AME paradigm on this basis, a formulation of this type is
desired that preserves the essential characteristics of AME as it is generalized
to multi-physics problems. As noted in Sect. 1.2, LBM and VD have been
applied to turbulence by appending treatments that are parameterizations
(as defined here) underneath the model. These extended formulations are thus
hybrids that are subject to the same limitations as other parameterizations.

This is a generic outcome of efforts to isolate the model representation
of individual subprocesses within limited scale ranges. As this inference sug-
gests, a robust remedy would be to implement all subprocesses at all scales.
Superficially this defines DNS, which is fully accurate but unaffordable for
most problems. However, there is an alternate, more affordable realization
of this strategy. Namely, implement all subprocesses at all scales in a lower-
dimensional space. 2D examples of dimension reduction include VD and 2D
Eulerian solution of the exact evolution equations. However, 2D turbulence
has qualitatively different characteristics from 3D turbulence, in addition to
the obvious limitation that general 3D initial and boundary conditions cannot
be represented in 2D.

Nevertheless, there is a form of dimensional reduction that can both pre-
serve the physics of 3D turbulence and accommodate general 3D flow con-
figurations, while providing an all-scale representation of all subprocesses.
Description and assessment of this formulation is the focus of the remainder
of this chapter.

2.3 Superparameterization and its AME Reformulation

Simulation of global atmospheric circulation is a salient application that con-
fronts the challenges outlined in Sects. 2.1 and 2.2. An emerging strategy for
addressing this problem exemplifies the all-scale AME paradigm. An impor-
tant caveat in this context is that geophysical-scale flows cannot be affordably
simulated with resolution to viscous scales, even in a formulation with reduced
dimensionality. However, the modelling concept can be recast so as to obtain
a fully resolved formulation applicable to engineering-scale flows.

The AME-type atmospheric simulation strategy is a variant of ‘superpa-
rameterization’ (SP) [14]. As noted in Sect. 2.2, the ultimate parameteriza-
tion is a DNS associated with each mesh control volume. A step back from
this would be a fully resolved 2D simulation associated with each mesh con-
trol volume. The qualitative as well as quantitative limitations of 2D simu-
lations (Sect. 2.2) would counteract the benefits of this degree of detail for
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Fig. 1. Alternate implementations of a superparameterization strategy for atmo-
spheric simulation. Left, top views; right, side views. In the top views, dots are nodes
of the large-scale simulation (general circulation model, GCM), long-dash lines de-
marcate simulation control volumes, and solid lines show the placements of the
cloud-system resolving model (CSRM), which live on vertically oriented domains.
Short-dash lines indicate couplings. Top case: Each CSRM domain (side view on
right) is coupled to a GCM node and simulates cloud evolution within the asso-
ciated control volume (here ignoring the multiple vertical layers of GCM control
volumes). Lateral boundary conditions are periodic (jagged lines). Middle case: A
distinct CSRM domain, configured as in the top case, is associated with each GCM
control–volume lateral interface. CSRM domains are coupled to each other and to
GCM nodes, as indicated. Couplings between CSRM domains that do not border
a common control volume are also allowed, but omitted for clarity. Bottom case:
The atmosphere is simulated using a coupled ensemble of CSRM domains, each of
which encircles the earth (so these domains have no lateral boundaries). Another
possible variant is the CSRM domain structure of the lower case combined with
GCM evolution as in the middle case
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many applications. However, for typical convective flow regimes in the ABL,
‘cloud-system resolving models’ (CSRMs) implemented on planar vertically
oriented domains have proven to be cost-effective alternatives to 3D simula-
tion [15–17]. In effect, 2D is found to be the dimensionality that optimizes the
cost-performance tradeoff for this class of flows. Accordingly, SP implements
a 2D CSRM-type simulation associated with each control volume of a general
circulation model (GCM) of the Earth’s atmosphere.

SP as such is subject to the inherent limitations of parameterization, but
a variant of this formulation that adheres to the AME paradigm is under de-
velopment [18]. To visualize this variant, imagine that the CSRM simulations
tile the vertical faces of the GCM control volumes in a hypothetical Carte-
sian geometry involving one planar layer of rectangular GCM control volumes.
Thus, the control volume height is the vertical extent of the simulations. In-
stead of implementing an independent CSRM on each vertical control-volume
face, suppose that a CSRM is implemented on each 2D domain corresponding
to a vertical sidewall of each row or column (the two horizontal coordinates)
of the array of GCM control volumes. Then the height of each CSRM domain
is the vertical extent of the simulated atmosphere, and its horizontal extent
spans one of the two horizontal directions (e.g. the Earth’s circumference if
the given direction is the Cartesian analogue of a great circle). With a suitable
coupling among these 2D domains, it is possible (and desirable, for the rea-
sons explained in Sect. 2.2), to dispense with the GCM itself and thus obtain
an AME-type formulation, which is denoted here as ‘super-AME’ (SAME).
Several of the possible variants of the superparameterization concept are il-
lustrated in Fig. 1.

2.4 A 1D AME Formulation

Having presented the rationale for the AME paradigm and the main elements
of its implementation for a particular application, adaptations for other pur-
poses are considered. As in the atmospheric flow application, a key consid-
eration is the spatial dimensionality that is most cost-effective for a given
application.

There are several applications for which a 1D formulation is advanta-
geous in principle. One is wall-bounded flow, in which evolution of the wall-
normal profile of flow properties embodies the dominant physics. Analogously,
thin free shear flows (e.g. jets, wakes and mixing layers) are boundary-layer
type flows whose representation based on property profiles along a lateral
coordinate is common [19]. Another such application is horizontally homo-
geneous vertically stratified buoyant flow. ‘Single-column models’ (SCMs)
are vertically oriented 1D formulations that are commonly applied to ABL
flows of this type [17]. Finally, ‘stationary laminar flamelet models’ (SLFM)
used in turbulent combustion simulations involve 1D (flame-normal) flow
representations [20].
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The 1D formulation described here has been applied to all these flow types.
Representative results are discussed in Sect. 7. For now, the utility of a 1D
formulation is assumed, deferring the question of how turbulence can be mod-
elled in 1D until Sect. 5.

Given such a 1D model, there are several ways that it can be used in the
construction of a 3D simulation. One way is to associate a 1D line segment,
on which the model is implemented, with each control volume of an LES,
analogous to one of the ways of incorporating CSRMs into a GCM (Sect. 2.3).
This 1D analogue of SP might be termed ‘semi-superparameterization’ (SSP)
because the sub-grid model dimensionality is half that of SP. Extending the
analogy, assume a Cartesian mesh of cubic LES control volumes. Consider the
rectangular volume formed by a linear stack of LES control volumes in any
one of the three coordinate directions (analogous to a row or column of GCM
control volumes). Now take each side-edge of each of these rectangular volumes
to be a 1D domain for implementation of the 1D model of turbulence. Each
of these domains then spans the flow in a given direction, and is presumed
to resolve all relevant length scales. Thus it has the needed attributes for
an all-scale AME-type formulation, subject to the specification of suitable
rules for coupling the various domains. This is the 1D analogue of SAME
(Sect. 2.3). For consistency with terminology used previously [21], this 1D
methodology is denoted ODTLES, while SSP and related 1D formulations are
denoted LESODT. Despite the terminology, ODTLES is an AME formulation
that does not involve the advancement of LES-type equations, just as SAME
(Sect. 2.3) dispenses with the GCM machinery.

2.5 Hybrid Formulations

Section 2.2 alludes to two of the many possible hybrid formulations that com-
bine attributes of the approaches mentioned thus far. Description of all the
promising possibilities is beyond the scope of this chapter, but a particular hy-
brid formulation that is based on the modelling approach discussed in Sect. 4.2
is mentioned here.

The distinction between parameterization, in which information is trans-
ferred between different scale ranges, and AME, in which all information trans-
fer involves spatially resolved quantities, has been emphasized thus far. For
some applications, it is advantageous to evolve some variables using param-
eterization and evolve others with full resolution. A variant of the domain
geometry described in Sect. 2.4 with reference to SSP (nominally a param-
eterization) has in fact been implemented as a hybrid of this type [22, 23].
Namely, for combustion simulation, thermochemical information (species mass
fractions and enthalpy) resides solely on the 1D line segments, while momen-
tum and pressure reside on the coarse 3D mesh. The upscale information
transfer consists of density changes that drive the mesh-resolved advance-
ment of the continuity equation. The downscale transfer consists of velocities
normal to control–volume faces. These velocities prescribe volume transfers,
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Fig. 2. Example of a hybrid formulation in which thermochemical information re-
sides solely within 1D sub-grid domains (tilted line segments) but flow evolves on
the coarse 3D mesh (Cartesian array of control volumes). Solid lines with arrows are
flow velocities, evolved on the coarse mesh, that determine volume transfers between
1D sub-grid domains. The splicing mechanism that implements these transfers is il-
lustrated. Each 1D domain has an input end (circle) and an output end (square).
Open and filled symbols demarcate the 1D domains before and after splicing. Por-
tions transferred during splicing are separated by tick marks. Dashed curves with
arrows indicate transfers between 1D domains in different control volumes. For de-
tails, see [24]. An alternative to specified input and output locations is to use periodic
1D domains. Then there are no preferred locations at which to remove and insert
domain segments

in a Lagrangian sense, between 1D segments associated with control volumes
that share a common face. This Lagrangian transfer operation, termed ‘splic-
ing’ (see Fig. 2), preserves chemical states, thereby mitigating the inherent
artefact of reacting-flow parameterization (Sect. 2.2). It also preserves small-
scale spatial structure, subject to an important caveat. In a receiver segment,
newly spliced fluid from a donor segment contacts receiver fluid at one lo-
cation, possibly creating an unphysical local configuration (e.g. cold fuel in
contact with cold air under physical conditions that would require flame at all
fuel–air interfaces). This is the first of several illustrations that dimensional
reduction involves compromises and trade-offs, as in any modelling approach.
Nevertheless, splicing is an advective transfer rather than a surrogate mixing
operation, so it preserves local chemical states. The only species mixing in this
formulation is by a physically accurate molecular mixing process, in contrast
to models that are strictly parameterizations.

Among the various proposed model formulations encompassed by the
rubric ‘superparameterization’ are some that would be termed hybrids in the
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present classification [18]. It can be anticipated that the distinct but overlap-
ping interests of the geophysical and engineering fluid dynamics communities
(as well as the astrophysics community, whose interests are discussed in the
chapter “Turbulent Convection and Numerical Simulations in Solar and Stel-
lar Astrophysics” and the chapter “Turbulent Combustion in Thermonuclear
Supernovae” in this volume) will stimulate a productive cross-fertilization of
modelling concepts as progress continues in these arenas.

3 Proposed Modelling Strategy

3.1 Overview

The goal of this chapter is to outline a turbulence simulation strategy in which
ODT is a central element, and in so doing, to motivate as well as explain
ODT. The strategy as outlined has not yet been implemented computation-
ally, although an effort to do so is underway and development of several key
components of the strategy has been completed.

Section 1 introduces the AME paradigm and explains its advantages for
turbulent flow simulation. The strategy outlined here is designed with this in
mind, subject to the inevitable compromises involved in modelling.

In Sect. 2.4, the 1D domain is defined geometrically as a line segment,
specifically, a line segment corresponding to an edge of a linear stack of cubic
control volumes (CVs). This is useful conceptually, but for numerical imple-
mentation, it is preferable to interpret 1D model evolution as occupying a
volume of space, enabling a finite-volume numerical representation. For this
purpose, the rectangular volume occupied by each stack of control volumes
within the 3D domain is taken to be a 1D model domain.

In particular, assume that the 3D flow domain is itself rectangular, with
coordinate bounds 0 ≤ x ≤ X, 0 ≤ y ≤ Y and 0 ≤ z ≤ Z. This geometry
corresponds to a proof-of-principle application proposed in Sect. 7.1, but for
now it is illustrative. Assume nominal CVs (whose role, in the absence of mesh-
scale advancement, is as yet unexplained) that are cubic with edge length M .
X, Y and Z are all assumed to be integer multiples of M , so the flow domain
can be tiled with a cubic array of these CVs. For convenience, express length
in units of M , so X, Y and Z are integers. Then the CVs in the array are
indexed (i, j, k), where 1 ≤ i ≤ X, 1 ≤ j ≤ Y and 1 ≤ k ≤ Z, and the
respective CVs are denoted Cijk.

CVs stacks, each of which is a 1D model domain as defined above, are
formally defined as

⋃
n Cijk, where n denotes either i, j, or k. For example,

Sx(j, k) =
⋃

i Cijk is the index-(j, k) stack oriented in the x direction, which
is then the coordinate direction of the 1D model implemented on Sx(j, k).
Sy(i, k) and Sz(i, j) are defined analogously, yielding three arrays of stacks
oriented in the respective coordinate directions. Each array fills the flow do-
main. Likewise, each CV Cijk is contained in three stacks.
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In the proposed formulation, three distinct flow solutions are time-advanced
concurrently, each in one of the stack arrays. Each is a self-contained solution
in that it does not exchange fluid or fluid properties with the other solutions,
but the solutions are coupled in that each determines fluxes that are used to
close the other two solutions. Each solution is designated by the corresponding
subscript of S, i.e. x, y, or z.

Now consider the substructure of each stack, or 1D domain. (These terms
are used interchangeably.) An x-oriented stack, or x-domain, is considered for
illustration. (In general, statements about x-domains are likewise applicable
to y-domains and z-domains.) By definition, each x-domain has a substruc-
ture consisting of a linear array of X cubic CVs, each of edge unity in the
chosen scaled units. The first and last CVs each have one face interior to the
x-domain, four contained in its respective side-faces, and one coinciding with
an end-face of the x-domain. The other CVs in the x-domain each have two
faces interior to the x-domain and four contained in its respective side-faces.
The union of noninterior CV faces coincides with the surface of the x-domain.

The CVs are central to the coupling of the three concurrent flow solutions.
Additional x-domain substructure needed to advance the individual solutions,
illustrated in Fig. 3, is now introduced.

The x-domain is already partitioned into X CVs by the CV interior faces.
A refinement of this partitioning is introduced. Parallel to those interior faces,
additional faces are introduced so that the x-domain is partitioned into mX
cells of identical shape, denoted ‘wafers’, where m is an integer. The x-domain
is now a linear array of mX wafers of edge 1/m (in scaled units), such that
the union of each successive set of m wafers coincides with a CV. Each wafer
is a rectangle of dimensions (1/m)×1×1, where in general m 
 1, hence the
terminology.

This x-domain refinement defines a mesh, resolving the length scale
Δx = 1/m, on which the 1D model is implemented. This is the length scale at
which the flow is resolved within the 1D treatment. 3D flow is captured explic-
itly at length scales above unity through the coupling of flow solutions. Below
length scale unity, 3D flow is captured only to the extent that it is represented
implicitly within the 1D model. (See Sect. 3.2.) If the CVs formed the mesh
for an analogous explicitly 3D flow simulation, then the range of represented
scales would be 1 through X. In the present formulation, an additional factor
m of scale resolution is introduced through modelling. Because this additional
resolution is introduced in 1D rather than 3D, the number of computational
cells in the simulation is smaller, by a factor of order m2, than the number
required for equivalent 3D resolution. The attendant computational cost re-
duction is the benefit of the present formulation. The trade-off for this cost
reduction is the use of a model, rather than the exact governing equations, to
evolve the flow at scales smaller than unity.

Commensurate with the disparate scales at which the flow is resolved in
1D and in 3D, the time step for advancement of the 1D model on an x-domain
is considerably shorter than the time step for coupling of the three flow
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Fig. 3. Top: Three orthogonal 1D domains that contain a given control volume,
here taken to reside at a corner of the 3D flow domain. Bottom: Within the control
volume (expanded view), the substructure of the portion of each 1D domain that
intersects the control volume is shown. In this example, the 1D spatial refinement
factor relative to the 3D control–volume structure (top) is m = 6

solutions. Therefore, 1D model advancement is subcycled within an overall
time-advancement cycle whose time increment corresponds to the solution-
coupling time step. (If fractional-step advancement is used, there may be
several coupling operations per time-advancement cycle. Numerical imple-
mentation is not considered here at this level of detail.) The advancement
cycle is explained further in Sect. 3.3.

Several aspects of numerical implementation are noted. First, during 1D
subcycling, each x-domain evolves autonomously. This provides an efficient
domain decomposition for parallel implementation that should yield near-
perfect scalability owing to the predominant cost of 1D subcycling relative to
other operations during the advancement cycle. Second, spatial uniformity of
the 1D refinement of the x-domain has been introduced for clarity of exposi-
tion. Though this meshing is used in 1D model applications reported to date,
an adaptive-mesh formulation presently under development offers the possi-
bility of substantial cost savings that will extend the range of applicability
of this formulation. (See Sect. 6.1.) Third, the advancement cycle as outlined
excludes any advancement subprocesses on the 3D mesh (union of CVs). If
an incompressible formulation of the momentum equation were adopted, then
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enforcement of continuity would require an elliptic solution of the pressure
Poisson equation, contravening the AME paradigm. A formulation of this type
has in fact been implemented [21], as discussed in Sect. 6.3. For the purpose
of formulating a model within the AME paradigm and noting its attributes,
a compressible analogue of that incompressible formulation is proposed.

3.2 1D Advancement

The 1D subcycling on each x-domain is both the novel feature and the main
physical content of the proposed formulation, so it is explained in detail in
Sect. 5. Here, the 1D modelling concept is introduced briefly.

Within the proposed compressible-flow treatment, a natural context for 1D
modelling is 1D gas dynamics [25]. In general, 1D gas dynamics is a steady-
state formulation useful for analysis of shocks and other high-Ma phenomena.
Here, compressibility is introduced in order to exploit its technical advantages
for turbulent flow simulation, as in [26], rather than for investigation of high-
Ma phenomena per se.

Starting from conventional 1D gas dynamics, possible extensions to rep-
resent turbulent flow effects are considered. Steady-state representation of
compressible as well as incompressible turbulent flow is provided by ‘Reynolds-
averaged Navier–Stokes’ (RANS) formulations. For compressible flow, the
simplest of these formulations introduce an eddy viscosity and an eddy dif-
fusivity (for temperature). Similarly, one can introduce eddy transport coeffi-
cients within (otherwise inviscid) 1D gas dynamics.

The advantages and limitations of such a formulation as a self-contained
model of compressible turbulence are not of interest here. The purpose of
a 1D compressible turbulence formulation in the present context is not to
obtain a self-contained model, but rather, to obtain a submodel suitable for
the proposed 3D AME framework.

Moreover, 1D gas dynamics with eddy transport does not in itself address
the present need. Operationally, eddy transport is a diffusive process that
smooths fluctuations rather than generating or sustaining them, contrary to
the present goal of explicitly simulating small scale turbulent fluctuations.

In this regard, recall the discussion in Sect. 1.2 of the relationship between
PDF evolution equations and SDEs. Turbulent transport, which is diffusive
in an average sense (and is represented diffusively in PDF as well as in RANS
turbulence models), can be represented in a fine-grained sense by SDEs. How-
ever, as noted in Sect. 1.2, if the SDEs are formulated in conformance to
model-based PDF evolution equations rather than the exact governing equa-
tions, the resulting fine-grained representation may not be physical, and in
fact, generally is not. (It is noted in passing that this caveat applies also to
LGH. Although LGH solves equations that are exact at the continuum level,
local particle fluctuations correspond in this instance to a postulated subcon-
tinuum dynamics that is not intended to be an accurate representation of
molecular fluctuation effects.)
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In fact, there is a generic difficulty with the introduction of fine-grained
structure using SDEs. SDEs are driven by noise fields that are difficult to con-
strain so that they obey global conservation laws, which require the constancy
of spatial integrals over specified functions of the noise, the dependent vari-
ables, or both. For applications involving separation of length scales, such as
the thermodynamic or hydrodynamic limit of statistical mechanics, this does
not necessarily cause a problem. For example, if molecule numbers in a set of
control volumes are allowed to fluctuate individually (e.g. Poisson shot noise
reflecting local density fluctuations), the constancy of total molecule number
in the whole system, which holds for a closed system with no chemical reac-
tions, is not enforced. However, in the thermodynamic limit, the stochastic
model describes a grand canonical ensemble that either converges to the be-
haviour of the physically correct canonical ensemble or can be used to infer
properties of the true physical system.

There is no separation of length scales in turbulent flow and hence no
freedom to deviate from global constraints, but there are ways to incorporate
conservation constraints in particular cases. For example, an SDE for the
stream function can be used to introduce velocity fluctuations while preserving
continuity in 2D. (In 2D, velocity is the curl of the stream function, assuring
that the flow remains solenoidal [27].) However, there is no obvious way to use
SDEs to obtain a reasonable fine-grained 1D representation of turbulence that
obeys applicable conservation laws. In this regard, the stochastically forced
Burgers equation [28], though in many ways an illuminating 1D analogue of
turbulence, is manifestly incapable of evolving fluid density in conformance
to a specified equation of state.

Thus, the utility of SDEs for modelling the small scales of turbulence is not
precluded, but an SDE formulation suitable for present purposes has not been
identified. On physical grounds, there is an inherently more robust approach.

The compressible flows of interest here involve both solenoidal (divergence-
free) and dilatational (curl-free) motions. The dilatational motions repre-
sented during 1D subcycling are governed by conventional 1D gas dynamics
(Sect. 5.4). Dilatational motions not included within this representation are
captured during solution coupling (Sect. 3.3). To be captured in a 1D formu-
lation, solenoidal motions require special treatment, as follows.

Consider the advancement, for a time Δt, of the advective operator in the
equation of motion for any property field θ(x, t), assuming numerical opera-
tor splitting so that other evolution processes (e.g. molecular transport) are
omitted. This advancement is equivalent to a mapping x → x′(x) of each
location x to a new location x′. The corresponding transformation of θ is
θ(x) → θ(x′(x)). This specifies the transformed θ field as a function of the
coordinate x′ at the new time by setting θ at new location x′ equal to the θ
value at the old time at the location x that is mapped to x′ by the advance-
ment operation.

This rather elaborate representation of advection, whose conventional rep-
resentation is the v · ∇ operator, is introduced because the two are not
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equivalent, but rather, the former is a generalization of the latter. To see
that the former includes the latter, integrate the Lagrangian advective equa-
tion dx/dt = v(x, t) from t to t + Δt to obtain the mapping x → x′(x) that
is equivalent to v · ∇ advancement for a given v(x, t) space–time history.

The advantage of the map representation of advection is that it can be used
to formulate models that decompose the advection process into a sequence of
discrete operations that advance property fields over any specified time in-
terval, e.g. finite rather than infinitesimal. This decomposition can replicate
physical advection exactly if the map is based on integration of the exact La-
grangian advective equation for given v(x, t) over a finite time interval Δt.
However, if v(x, t) is not known a priori because fully resolved advancement
of the exact 3D governing equations is unaffordable, then a map represen-
tation based on a postulated stochastic process can be used to model this
advancement.

Stochastic iterated maps are in fact familiar tools of statistical mechanics
modelling, including turbulence models [29, 30]. The noteworthy feature here
is the application of the maps to the independent variable x rather than to
the dependent variable θ. This approach allows incorporation of features of
advection that are needed for physically sound flow simulation.

In VD (Sect. 1.2), the continuum process of vortical advection is spatially
discretized but advanced in continuous time. The map representation of ad-
vection likewise enables discretization of a continuum process, in this case in
the time domain. The specific map ansatz that is introduced is analogous to
the individual vortex blob in VD in that it is applied to a finite spatial region
and is intended to represent an elementary fluid motion (‘eddy’) in turbulence.
However, a vortex blob can persist indefinitely (although some VD implemen-
tations allow blob merger) and execute any number of circulations, but each
map is a one-shot event representing a particular displacement field (x′ − x
as a function of x), e.g. one circulatory motion.

Map-based advection modelling, applied in 3D, yields novel mathematical
insights as well as an efficient simulation method for a class of turbulent
multiphase processes [31]. For present purposes, the key point is that map-
based advection can be applied in 1D.

In 1D, the only solenoidal flow that can be generated by the v ·∇ operator
is rigid translation. In map language, the solenoidal property can be stated
as follows:

∫
σ′ dx

′ =
∫

σ
dx for any subset σ of x, where σ′ is the image of

the subset σ obtained by the transformation x → x′. (Henceforth, boldface
is omitted in statements specialized to 1D, although in this and some other
cases the validity of the statement is not restricted to 1D.) This is a state-
ment of measure preservation by the map. It is more general than the usual
solenoidal condition ∇ · v = 0 because it encompasses a more general class of
advection processes. The existence, within the map representation of advec-
tion, of nontrivial 1D motions that are measure preserving, and obey another
essential property, is the key motivation for introducing map-based advection
here (although it is likewise useful in 3D, as noted).
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The other essential property is a particular form of continuity. It is different
from adherence to the continuity equation, which reduces, for incompressible
flow, to the solenoidal condition. Here, continuity refers to the relation

|x(x′
1) − x(x′

2)| ≤ B |x′
1 − x′

2| , (1)

where subscripts denote particular values of x′, and B is a finite numerical
constant; for the map ansatz adopted here (Sect. 4.2), B = 3. Equation (1)
ensures that the map does not introduce spatial discontinuities into a contin-
uous function, i.e. h(x′) ≡ g(x(x′)) is continuous in x′ if g(x) is continuous
in x.

It is important to enforce this form of continuity, not only because it is
obeyed by the exact equations of motion (except for inviscid compressible
flow, which is not considered here), but also because violations of this con-
dition can introduce significant artefacts. Velocity discontinuities correspond
to infinite local strain and thus, unphysically large local turbulence produc-
tion. A possible anomaly resulting from species concentration discontinuities
is noted in Sect. 2.5.

These artefacts can be remedied to some extent, but there is a more fun-
damental reason for enforcing (1). The coefficient B in (1) bounds the multi-
plicative decrease in separation that a map can induce between a pair of fluid
elements (here meaning fluid states at particular points in space). Central
to turbulent cascade phenomenology is the notion of locality of the turbu-
lent cascade in scale space, i.e. individual fluid motions in turbulence (eddies)
induce at most order-unity reduction of fluid-element separation [11]. Inter-
mittency suggests deviations from this picture that can be interpreted within
the present framework as locally large values of B. The mapping ansatz has
been formulated in a way that accommodates this [32], but implementations
to date conform to (1) with B = 3, and in one instance B = 5 [33].

Formally, a map represents a change of configuration corresponding to
some time increment Δt. It would therefore appear that a time update should
be associated with map implementation. However the formulation does not
accommodate this for several reasons. First, maps are applied to finite spa-
tial regions, representing the spatial extents of individual turbulent eddies
within the 1D representation. In turbulence, many eddy motions are occur-
ring at a given instant, implying multiple overlapping time increments, if a
corresponding literal time advancement is triggered by each map. This leads
to conceptual as well as computational difficulties. Second, the intent is to
model all physical processes subsumed in the governing equations, not solely
advection. There is no plausible way to time advance, e.g. diffusive transport,
as a subcycling process within a map representation of an eddy because a
map is inherently instantaneous. Hence, the finite time duration of an eddy
motion cannot be represented operationally within the model.

The physics associated with eddy time scales is nevertheless contained in
the model, albeit in an indirect way that does not fully capture turbulence
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phenomenology. Operationally, 1D advancement consists of conventional ad-
vancement of subprocesses other than solenoidal advection, punctuated by
instantaneous maps representing the latter (with no associated time incre-
mentation). This is equivalent to a sequence of initial-value problems, where
the system state after a map is the initial state, which is advanced until the
occurrence of the next map, which modifies the spatial structure of the de-
pendent variables in some subregion, thereby establishing initial conditions for
further time advancement. The statistics of the time intervals between maps
in various size ranges are the model representation of the temporal character
of eddy motions.

Thus, within the 1D advancement there is an operator splitting, reflect-
ing the qualitatively different model representations of solenoidal advection,
consisting of maps, and other subprocesses. Between each map and the next,
the other subprocesses are subcycled; this might involve additional operator
splitting based on numerical considerations. These other subprocesses corre-
spond to 1D gas dynamics in the conventional sense, including dilatational
flow aligned with the 1D domain (Sect. 5.4).

3.3 Advancement Cycle

A minimal description of the advancement cycle, omitting consideration of
chemistry, output gathering and related issues, is presented. As noted in
Sect. 3.1, three distinct coupled flow solutions are advanced concurrently.
For a given dependent variable θ, e.g. density or a velocity component, its
state at a given time t is specified, for a given solution (e.g. the solution la-
belled x), as {θjk(x, t)}, where 0 ≤ x ≤ X, 1 ≤ j ≤ Y and 1 ≤ k ≤ Z. Here,
x is any real number in the specified range of the continuum 1D domain. For
the discrete finite-volume formulation based on wafers of width 1/m (in the
units of Sect. 3.1), in which x corresponds to wafer centres, x takes the values
(2n − 1)/(2m), where n is an integer in the range 1 ≤ n ≤ mX. The integer
indices j and k label the θ profiles in the corresponding domains Sx(j, k).

For the various dependent variables θ, this prescription fully specifies the
states of the three flow solutions at time t. Note that no variables associated
with the coarse CVs Cijk are needed to specify the solution states. This is the
hallmark of an AME-type formulation.

Initial and boundary conditions are specified with reference to individual
property profiles θjk(x, t). For illustration, Rayleigh convection, a suitable tar-
get case for initial model application (Sect. 7.1), is considered. This flow is
generated by holding each boundary of the rectangular flow domain at fixed
temperature so as to induce gravitational instability, e.g. taking the bottom
boundary (z = 0, where z is the vertical coordinate) to be at a given temper-
ature T0, while the other boundaries are held at some common temperature
T1 < T0. No-slip conditions are applied at all these boundaries.

The simulation is run until initial transients are relaxed, as measured,
e.g. by velocity or temperature fluctuations at the centre of the enclosure.
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Flow statistics are then gathered during the subsequent statistically steady
advancement. Therefore initial conditions are irrelevant. A simple choice of
initial conditions is uniform temperature T1 and motionless fluid throughout
the domain.

Application of the boundary conditions is closely tied to the advancement
cycle, which is now considered. Conceptually, though not necessarily in an
efficient numerical implementation, the advancement cycle consists of two
steps:

1. Subcycling, independently within all the domains Sx(j, k), Sy(i, k) and
Sz(i, j) of all three flow solutions, to advance the processes described in
Sect. 3.2 from time t to time t′ = t + Δt, where Δt is the advancement
time step.

2. Property transfers across the boundaries of all the domains Sx(j, k),
Sy(i, k), and Sz(i, j) to enforce the equality of property fluxes across each
CV face in the three flow solutions during the time interval Δt.

This advancement procedure is illustrated schematically in Fig. 4.

Fig. 4. Schematic illustration of the advancement procedure, here restricted to do-
main directions x (horizontal) and y (vertical). Left : A particular x-domain Sx(j, k)
is shown partitioned into wafers (here, m = 4). During step-1 subcycling within this
domain, a property θ is fluxed across an interface on the common boundary of the
two y-domains that are shown, denoted Sy(i, k) and Sy(i + 1, k) in the text. CV
boundaries of these two domains are shown, but not their wafer substructures. The
three arrows originate on the common boundary of the two y-domains. The middle
arrow represents the θ flux due to step-1 processes on the x-domain that is shown.
The arrows above and below it are fluxes generated by neighbouring x-domains (not
shown). Right : The wafer substructures of the two y-domains are shown. The ar-
rows are flux-conserving interpolants of the fluxes shown on the left. They prescribe
θ transfers between wafer pairs across the wafer faces on which the arrows originate,
thereby implementing lateral coupling of the two y-domains
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The significance of step 2 is illustrated by considering the common face of
CVs Cijk and C(i+1)jk. It is interior to Sx(j, k) and on a lateral boundary of
each of the domains Sy(i, k), Sy(i+1, k), Sz(i, j) and Sz(i+1, j). All three flow
solutions require physically accurate property fluxes across this face during
Δt. Step 1 induces property fluxes across surfaces interior to each 1D domain,
but none across the lateral bounding surfaces of these domains, so these fluxes
must be prescribed and implemented in some other way.

As the example illustrates, each CV face on a lateral boundary of a 1D
domain is in the interior of a 1D domain of a different flow solution. Therefore
properties are fluxed across that face during the step-1 advancement of the
flow solution in which it is an interior face. These fluxes can be monitored
during step-1 advancement of that flow solution.

The modelling assumption that closes the 3D formulation is that each
property flux across a given CV face is the same in all three solutions. This
implies, by Gauss’ theorem, that all three solutions are the same at the mesh-
filtered level unless property sources and sinks associated with 1D subcycling
(step 1) are different within a CV for different solutions. This is possible in
the present formulation, e.g. due to differing details of small scale mixing
that affect chemical reaction rates locally. Mesh-filtered conserved properties
evolve identically in the three solutions. (Here, filtering is a data-reduction
technique rather than a part of the advancement algorithm.)

Thus, each property flux across a given CV face that is determined by one
of the solutions during step 1, becomes a prescribed flux that, during step 2,
governs transfer of the property across that face in the other two solutions.
The step-2 transfers are between pairs of wafers in adjacent 1D domains, e.g.
the 1D domain pair Sy(i, k) and Sy(i+1, k) in the example, and likewise, the
1D domain pair Sz(i, j) and Sz(i + 1, j).

To specify the transfers in detail, consider the step-2 transfers of property
θ across the common face of CVs Cijk and C(i+1)jk in solution y. Let F be the
θ flux across this face that is prescribed by solution x during step 1. Then for
each integer n in the range [1,m], the wafer values θik(x, t) and θ(i+1)k(x, t),
where x = i + (2n − 1)/(2m), are incremented by ±f(x)Δt, where − and +
apply to the respective θ values and f(x) is an interpolated flux constrained
to obey

∑m
n=1 f(x) = mF . (Interpolants constrained in this manner have

previously been used analogously [21, 34].)
The implementation of boundary conditions is essentially the same as the

treatment of property fluxes at CV faces in the interior of the flow domain.
Consider a CV face that is part of the flow boundary. The boundary condi-
tion at that face is applied during step-1 subcycling of the 1D domain that is
bounded by that face and oriented normal to it. The flux of a given property
θ through that face during step 1 is monitored, or it may have a known value
specified by the boundary condition. During step 2, this flux value F is an
imposed flux across that face for the other two 1D domains that are bounded
by the face. The interpolant f is constructed and θ values are modified ac-
cordingly, analogous to flux implementation across faces interior to the flow
domain.
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3.4 Relationship to Conventional Methods

The advancement cycle outlined in Sect. 3.3 is applicable irrespective of the
details of the 1D advancement (Sect. 3.2). The fluxes during step 1 reflect
contributions by molecular and advective transport, where the solenoidal part
of the advective contribution is due to fluid displacements by maps. Alterna-
tively, the solenoidal part could be based on a postulated eddy diffusivity. This
representation of solenoidal flow on the 1D domain would smooth rather than
wrinkle property profiles, so 1D mesh refinement (m 
 1) would become spu-
rious. Nevertheless, this alternative indicates the formal analogy, as well as the
key physical distinction, between the present framework and conventional LES
of compressible flow. The distinction is the resolution and explicit evolution,
rather than smoothing, of small scale processes in the present formulation.

Not only is the present formulation formally analogous to LES; it can be
rendered equivalent to an LES through constraints on the implementation
of maps. As explained in Sect. 5, the map sampling process generates a dis-
tribution of map sizes that generally conform to the eddy size distribution
inferred from conventional turbulence phenomenology. For a given magnitude
of property gradient, the map-induced flux depends primarily on the size-vs.-
frequency distribution of maps.

To render the model formally equivalent to LES, one can deviate from this
physically based prescription as follows. Characterize the overall magnitude of
map-induced transport by an eddy diffusivity κe, which scales as φL2, where
φ and L are a representative frequency and size of the large eddies (i.e. the
largest eddies implemented in 1D; see Sect. 6.2), which dominate transport.
Assume that φ is increased and L is reduced so as to maintain constant κe,
yielding many small eddies inducing the same transport as a smaller number
of larger eddies. In the limit of diverging eddy frequency and vanishing L, the
law of large numbers implies that fluctuations of property fluxes time averaged
over the advancement step Δt vanish, so the stochastic model becomes deter-
ministic. In this limit, the map sequence no longer induces physically relevant
fine structure and its role is reduced to transport characterized by the diffu-
sivity κe. Formally then, the model reduces to LES with an eddy-diffusivity
closure, where the specific form of the closure depends, as in conventional LES,
on how the dependence of κe on the flow state is specified. In this regard, the
ODT eddy-selection process (Sect. 5.1) is closely analogous to conventional
LES closure; see [35] for details.

Apart from its reduction to the physical modelling content of conventional
LES, the present formulation requires an alternating-direction solution algo-
rithm that differs from conventional LES numerics. Revision of the idealized
advancement scheme of Sect. 3.3 can be anticipated as the algorithm is devel-
oped and tested.

This reduction to LES highlights the physical contribution of the map
process when it has a realistic size-vs.-frequency distribution. As the scale
L is dialed up from zero, fluctuations and associated fine-scale structure are
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introduced, but these properties do not necessarily enhance the realism of
the model if the map distribution is not physically accurate. To benefit from
this departure from an LES formulation, the induced fluctuations must be
sufficiently accurate to provide a gain in model fidelity that justifies the com-
putational cost of the method. This is best judged from the performance of
the model. The particular formulation outlined here has not yet been imple-
mented, but it is closely analogous to existing formulations, which are now
considered in further detail in order to highlight the modelling concept and
to assess how it might perform within the formulation proposed here.

4 Map-Based Advection Models

4.1 1D Models of Turbulent Premixed Combustion

Efforts by the author and co-workers to develop map-based methods for tur-
bulent flow simulation in one or more spatial dimensions are summarized. The
intent is to indicate the variety of possible formulations and the physics that
is captured and omitted in particular instances.

The starting point was an effort to develop a minimal model of turbulent
premixed combustion. The initial outcome was a formulation in which the
instantaneous state of a turbulent flame is idealized as a bit vector (row of
integers 0 or 1) in which each pair of adjacent bits interacts in two ways.

First, each 0 is converted into a 1 at a mean rate B times the number (0, 1,
or 2) of adjacent bits in state 1. This process represents laminar burning with
laminar flame speed BL, where L is the nominal spatial separation of adjacent
bits. Note that there is some subtlety even at this level of description. The
middle bit in a 101 configuration is deemed to burn twice as fast as in a 100
or 001 configuration because flames consume it from both sides, which is a
reasonable but not uniquely plausible idealization of flame propagation. Also,
this is a random process but could be plausibly formulated as a deterministic
process.

Second, each pair of adjacent bits is exchanged (e.g. 01 to 10, 10 to 01,
00 and 11 unaffected) at a mean rate R, thus idealizing turbulent advection
with eddy diffusivity RL2. (Note that bits execute simple random walks with
event rate 2R.) Like laminar burning, this process is random in time, namely a
Poisson process with mean event rate R for each bit pair. Model dynamics are
governed by one nondimensional parameter, γ = R/B, which can be viewed
as an idealization of the quantity u′/S that governs 3D turbulent combustion,
where u′ is the root-mean-square turbulent velocity fluctuation and S is the
laminar flame speed. 1/B times the mean rate of 0-to-1 conversions is then
the model analogue of uT /S, where uT is the turbulent burning velocity.

For a step-function initial bit profile, this process relaxes to statistically
steady propagation that captures some qualitative features of turbulent pre-
mixed combustion [36]. It has been shown that the model analogue of uT is
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governed by the Kolmogorov–Petrovsky–Piscounov velocity-selection princi-
ple in the large-γ limit [37]. To improve the physical realism of this formula-
tion, it was extended by allowing exchanges of the positions of nonadjacent
bit pairs, idealizing the effects of turbulent eddies of various sizes [38].

4.2 Linear-Eddy Model

Though bit-pair exchange over a range of bit separations reflects the range of
eddy motions in turbulence, it does not reflect the coherence of eddy motions,
meaning that a large eddy displaces a larger volume of fluid in a given direc-
tion than does a small eddy. Accordingly, an exchange process denoted block
inversion was introduced, involving the reversal of the order of bits j through
j + l − 1 to represent a size-l eddy [39]. This change was necessitated by the
application of the 1D approach to diffusive scalar mixing rather than flame
propagation; bit-pair exchange gives far too rapid length-scale reduction in
this context. This artefact occurs also for flame propagation, but is less severe
in that context because uT is more sensitive to the distance and frequency of
the largest bit displacements than to the amount of fluid transported.

Block inversion introduces scalar discontinuities at eddy endpoints. From
a spectral viewpoint, this corresponds to transfer of scalar fluctuations from
finite wave-number k to k = ∞, violating the spectral locality of length-scale
reduction that is a hallmark of the inertial-range turbulent cascade [11].

To remedy this artefact, the scalar-mixing formulation, denoted the ‘linear-
eddy model’ (LEM), was improved by introducing a new exchange process,
termed the triplet map [40]. This is not a pair exchange, but rather, a per-
mutation of cell indices j through j + l − 1. Taking the map range l to be a
multiple of 3, the triplet map, illustrated in Fig. 5, permutes the cell indices

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  16               16
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 15               15
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0                14               14
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0               13               13
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0              12             10
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0             11            7
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0            10            6
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0            9        =       9
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0           8                    12
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0          7                    11
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0         6                   8
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0        5                 5
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0       4                 4
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0      3                 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0     2                 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1    1                 1

Fig. 5. Application of a triplet map, with l = 9, to a 16-element column vector with
vertically increasing cell indices. For clarity, unity matrix elements are boldface
and cells are shifted horizontally in proportion to their index values. The shifts are
intended to suggest the 1D profile of the mapped variable
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into the new order j, j + 3, j + 6, . . . , j + l − 3, j + l − 2, j + l − 5,
j + l − 8, . . . , j + 4, j + 1, j + 2, j + 5, j + 8, . . . , j + l − 4, j + l − 1.
This operation reduces the separation of any pair of cells by no more than a
factor of three, thus satisfying the scale locality of length-scale reduction. It
is the simplest of a family of permutations that preserve scale locality, and
is optimal in that no other member of the family enforces a smaller bound
B (Sect. 3.2) on the maximum scale-reduction factor. Because it is a permu-
tation of equal-sized cells, the triplet map is measure preserving in the sense
defined in Sect. 3.2.

LEM is parameterized by a Péclet number Pe, which is the eddy diffu-
sivity associated with transport by the triplet-map sequence divided by the
molecular diffusivity. On this basis, LEM has been used to study the depen-
dencies of turbulent mixing and reaction processes on Pe and on the initial
and boundary conditions imposed on one or more scalar profiles that evolve
on the 1D domain [33, 41–46].

4.3 One-Dimensional Turbulence

LEM simulates mixing induced by parametrically specified turbulent advec-
tion. To obtain a model that, instead, predicts turbulent flow evolution,
profiles of one or more velocity components were introduced on the 1D do-
main, and the random selection of individual eddies (here parameterized by
j, l, and time of eddy occurrence) was generalized [32]. In LEM, the eddy rate
is a prescribed function of l, reflecting the known inertial-range frequency-vs.-
wavenumber scaling [11], and also depends on j if the flow is spatially inhomo-
geneous. In the predictive flow model, denoted ‘one-dimensional turbulence’
(ODT), the sampling rate for each eddy (parameterized by j and l) is a func-
tion of the instantaneous flow state, based on turbulence production and dissi-
pation mechanisms that are conventionally used to estimate eddy time scales
[47]. A key distinction here is that conventional estimation based on mixing-
length phenomenology is typically applied to quantities subject to some form
of averaging or filtering, but in ODT, mixing-length phenomenology is applied
to instantaneous property profiles that are not subject to averaging or filtering.

In ODT, the key molecular process that evolves concurrently with eddy
events (i.e. the analogue of laminar flame propagation in premixed combustion
and molecular diffusivity in LEM) is molecular viscosity, as prescribed by
the viscous-transport term of the momentum equation. The corresponding
nondimensional parameter that governs constant-property flow evolution in
ODT is a Reynolds number. In ODT, as in 3D flow simulation, the nominal
Reynolds number is defined in terms of domain geometry and flow initial and
boundary conditions, but the turbulent Reynolds number, defined in terms
of u′, the mean energy dissipation rate, and the kinematic viscosity, is an
outcome of simulated flow evolution rather than an input.

Velocity profiles in incompressible ODT do not advect fluid (see Sect. 5.4
for discussion of compressible ODT), but they influence triplet-map advection

This copy belongs to 'acha04'



316 A.R. Kerstein

through their role in determining eddy-sampling rates. In this sense they are
auxiliary variables, but in addition, they are the flow observables. The tight
two-way coupling between velocity-profile evolution and eddies (triplet maps
advect velocity profiles) maintains overall consistency of velocity statistics and
map-induced transport.

Buoyancy effects have been incorporated into ODT, and buoyant strati-
fied flows have been studied extensively [32, 47–51]. In fact, buoyancy alone
(velocity profiles omitted) is a sufficient input to eddy rate determination to
provide a reasonable representation of some flows of interest (including the
flow considered in Sect. 7.1), motivating a simplification of ODT that is termed
‘density-profile evolution’ (DPE) [32, 48]. ODT has also been used to study
free shear flow [52–54], confined flow (Sect. 7.2) and combustion [55–57].

4.4 Higher-Dimensional Map-Based Methods

The triplet map generalizes straightforwardly to higher spatial dimensions.
This generalization is found to be useful both theoretically and computa-
tionally [31]. The relaxation of advective time-stepping constraints, and the
option of a mesh-free Lagrangian algorithm (based on the spatial continuum
definition of the triplet map, see Sect. 5), offer substantial computational ad-
vantages even in 3D.

In higher dimensions, it is possible to define a deterministic map-based ad-
vection protocol that is a useful representation of turbulence in some contexts.
One such formulation, ‘deterministic turbulent mixing’ (DTM), has been used
to study flame-front geometry in turbulent premixed combustion [58].

5 ODT Formulation of Substructure Advancement

5.1 Boussinesq Formulation

To date, compressible gas dynamics has not been incorporated into ODT.
The existing formulation that has the features closest to those needed in a
compressible formulation is one that is based on the general variable-density
conservation equations (i.e. not specialized to small density fluctuations) [54].
This formulation involves mathematical intricacy that obscures the underly-
ing modelling concepts, and a compressible formulation will be even more
obscure in this regard. Therefore the formulation outlined here is based on
the Boussinesq approximation [59], in which density variations are deemed
negligible except in the gravitational forcing term. Gravity is included here
both to illustrate the treatment of a dynamically active scalar property (here,
density) and because the initial target application of the proposed ODTLES
formulation is a buoyancy-driven flow. This formulation is roughly analogous
to the ODT formulation in [47].
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A mathematical statement of this illustrative formulation is presented. In
Sect. 4.2, a spatially discrete definition of the triplet map was given. Hence-
forth, space and time variables are continuous unless stated otherwise, and
the triplet map is defined on the spatial continuum.

The ODT formulation utilized here simulates the time evolution of velocity
components u, v and w and density ρ defined on a 1D domain representing the
vertical (z) coordinate. This evolution involves two processes: (1) a sequence of
eddy events, which are instantaneous transformations that represent turbulent
stirring and (2) intervening time advancement of conventional form. Each eddy
event may be interpreted as the model analogue of an individual turbulent
eddy. The location, length scale, and frequency of eddy events are governed
by a stochastic process.

During the time interval between each eddy event and its successor, the
time evolution of property profiles is governed by the equations

(
∂t − ν∂2

z

)
u(z, t) = 0 (2)

(
∂t − ν∂2

z

)
v(z, t) = 0 (3)

(
∂t − ν∂2

z

)
w(z, t) = 0 (4)

(
∂t − γ∂2

z

)
ρ(z, t) = 0. (5)

Here ν is viscosity and γ is diffusivity of the scalar, temperature, that controls
the density. For simulation of Rayleigh convection, discussed in Sect. 7.1, these
equations are solved on a vertical domain [0,H], where H is the height of the
convection cell. Boundary conditions applied to the velocity at z = 0 and
H are u = v = w = 0. Density boundary conditions are ρ(0, t) = ρ1 and
ρ(H, t) = ρ2, where ρ2 > ρ1 to enforce unstable stratification, which drives
the flow.

Each eddy event consists of two mathematical operations. One is a triplet
map representing the fluid displacements associated with a notional turbulent
eddy. The other is a modification of the velocity profiles in order to imple-
ment pressure-induced energy redistribution among velocity components and
net kinetic-energy gain or loss due to equal-and-opposite changes of the grav-
itational potential energy. These operations are represented symbolically as

ρ(z) → ρ(M(z))
u(z) → u(M(z)) + cuK(z)
v(z) → v(M(z)) + cvK(z)
w(z) → w(M(z)) + cwK(z).

(6)

According to this prescription, fluid at location M(z) is moved to location z by
the mapping operation, thus defining the map in terms of its inverse M(z).
This mapping is applied to all fluid properties. The additive term csK(z),
where s = u, v, or w, affects only the velocity components. It implements the
aforementioned kinetic-energy changes. Potential-energy change is inherent in
the mapping-induced vertical redistribution of the ρ profile; see (10).
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In the spatial continuum, the triplet map is defined as

M(z) ≡ z0 +

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3(z − z0) if z0 ≤ z ≤ z0 + 1
3 l,

2l − 3(z − z0) if z0 + 1
3 l ≤ z ≤ z0 + 2

3 l,

3(z − z0) − 2l if z0 + 2
3 l ≤ z ≤ z0 + l,

z − z0 otherwise.

(7)

This mapping takes a line segment [z0, z0+l], shrinks it to a third of its original
length, and then places three copies on the original domain. The middle copy
is reversed, which maintains the continuity of advected fields and introduces
the rotational folding effect of turbulent eddy motion. Property fields outside
the size-l segment are unaffected.

The spatially discrete numerical implementation of the triplet map, il-
lustrated in Fig. 5, transparently obeys conservation properties because it is
implemented as a permutation of equal-sized cells, as noted in Sect. 4.2. In the
continuum limit that is approached by increasing the spatial refinement, the
map definition (7) is recovered. Figure 5 reflects key features of the continuum
definition, notably the increase of property gradients in the compressed copies
and gradient reversal in the middle copy.

In (7), the parameters z0 and l are the continuum analogues of the integer
quantities j and l in the discrete definition of the triplet map. Here, z0 specifies
the location, and l the size, of the eddy event.

In (6), K is a kernel function that is defined as K(z) = z −M(z), i.e. its
value is equal to the distance the local fluid element is displaced. It is nonzero
only within the eddy interval, and it integrates to zero so that the process
does not change the total (z-integrated) momentum of individual velocity
components. It provides a mechanism for energy redistribution among velocity
components, enabling the model to simulate the tendency of turbulent eddies
to drive the flow towards isotropy, constrained by the requirement of total
(kinetic plus potential) energy conservation during the eddy event (which is
nondissipative).

To quantify these features of eddy energetics, and thereby specify the
coefficients cs in (6), it is convenient to introduce the quantities

sK ≡ 1
l2

∫
s(M(z))K(z) dz, (8)

where s = u, v, w, or ρ. Substitution of the definition of K(z) into (8) yields

sK =
1
l2

∫
[zs(M(z)) −M(z)s(M(z))] dz =

1
l2

∫
[s(M(z)) − s(z)]z dz. (9)

Because M(z) is a measure-preserving map of the z domain onto itself, the
domain integral of any function of M(z) is equal to the domain integral of the
same function with argument z. This allows the substitutions of z for M(z)
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that yield the final result in (9). For s = ρ, this expression is proportional to
the potential-energy change induced by the triplet map. The energy change
Δ caused by an eddy event can then be expressed as

Δ = ρ0l
2 (cuuK + cvvK + cwwK) +

2
27

ρ0l
3
(
c2u + c2v + c2w

)
+ gl2ρK , (10)

where a reference density ρ0 (defined here as mass per unit height, based on
a nominal column cross-section) is introduced (i.e. the standard Boussinesq
prescription), as well as the gravitational acceleration g.

The representation of both the potential and kinetic energy contributions
in (10) using (8) is a consequence of the definition chosen for K. Based on
this definition, another equivalent form of (8),

sK ≡ 4
9l2

∫ z0+l

z0

s(z)[l − 2(z − z0)] dz, (11)

which is useful for numerical implementation, is readily obtained.
Overall energy conservation requires Δ = 0. Two additional conditions are

required to specify the coefficients cs. These are based on a representation of
the tendency for eddies to induce isotropy. For this purpose, it is noted that
there is a maximum amount Qs = (27/8)ρ0ls

2
K of kinetic energy that can be

extracted from a given velocity component s during an eddy event [53]. (The
amount of energy actually extracted or deposited depends on cs.) Qs is thus
the ‘available energy’ in component s prior to event implementation. The
tendency towards isotropy is introduced by requiring the available energies
of the three velocity components to be equal upon completion of the eddy
event. This provides the additional needed conditions and yields the following
expression determining cs:

cs =
27
4l

[
−sK ±

√
1
3

(
u2

K + v2
K + w2

K − 8gl
27

ρK

ρ0

)]
. (12)

The physical criterion that resolves the sign ambiguity is explained in [53].
Note that the last term in (12) is the square root of a quantity proportional
to the net available energy Qu + Qv + Qw − P , where the quantities Qs

are the component available energies prior to event implementation and P is
the gravitational potential energy change caused by triplet-mapping of the ρ
profile, requiring equal-and-opposite change of available energy during eddy
implementation, as enforced by the condition Δ = 0. If P is positive (stable
stratification) and larger than the available energy, then the eddy is ener-
getically prohibited. In this case, the argument of the square root in (12) is
negative and the eddy event is not implemented (see below).

Although the formulation of an individual eddy event incorporates several
important features of turbulent eddies, the key to the overall performance of
the model is the procedure for determining the sequence of eddy events during
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a simulated flow realization. The expected number of eddies occurring during
a time interval dt, whose parameter values are within dz of z0 and within dl of
l, is denoted the ‘eddy rate distribution’ λ(z0, l; t) dz0 dl dt, where λ has units
of (length2×time)−1. Eddies are randomly sampled from this distribution.
Mathematically, this generates a marked Poisson process [60] whose mean rate
as a function of the ‘mark’ (parameter) values z0 and l varies with time. The
physical content of the eddy selection process is embodied in the expression
for λ that is adopted,

λ =
Cν

l4

√(
uK l

ν

)2

+
(
vK l

ν

)2

+
(
wK l

ν

)2

− 8gl3

27ν2

ρK

ρ0
− Z. (13)

This expression involves two free parameters, C and Z, whose roles are ex-
plained in Sect. 6.2. λ is set equal to zero if the argument of the square root
is negative, indicating an energetically prohibited event; see the discussion
of (12).

For Z = 0, the argument of the square root is a scaled form of the net
available energy. Thus, for given z0 and l, (13) with Z = 0 is simply the dimen-
sionally consistent relation between the net available energy and the length
and time scales of eddy motion, where the associated time scale is the inverse
of the (appropriately normalized) eddy rate λ. Thus, (13) may be viewed as a
representation of mixing-length phenomenology within the ODT framework.
This phenomenology is the basis of many turbulence modelling approaches.
In particular, it is central to LES closures based on eddy viscosity, hence the
analogy between conventional LES and the proposed ODTLES methodology
(Sect. 3.4). However, the present approach, which does not involve averag-
ing, differs from the typical use of mixing-length concepts to close averaged
equations in several respects:

1. Rather than assigning a unique l value at each spatial location, ODT
allows eddies of all sizes throughout the spatial domain, with their relative
frequencies of occurrence at different locations specified by (13).

2. Quantities on the right-hand side of (13) depend on the instantaneous
flow state rather than an average state, so eddy occurrences are responsive
to unsteadiness resulting from transient forcing or statistical fluctuations
inherent in the eddy-sampling process.

3. Eddy occurrences thus depend on the effects of prior eddies and affect
future eddy occurrences. These dependencies induce spatio-temporal cor-
relations among eddy events, leading to a physically based representation
of turbulence intermittency.

These attributes of ODT are the basis of its detailed representation of tur-
bulent cascade dynamics coupled to boundary conditions, shear and buoyant
forcing, etc. In particular, the stochastic variability of simulated ODT realiza-
tions arises from a physically based representation of turbulent eddy statis-
tics, and thus enables a conceptually sound and mathematically consistent
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assessment of the effects of stochastic variability on the variability of, and
correlations among, output statistics.

If two of the three velocity components are removed from the model, (13)
reduces to the eddy rate distribution used in [49]. If the buoyancy term is
omitted, (13) resembles the expression for λ that appears in [53], except that
here, λ is based on the total available energy (including contributions from all
three velocity components) rather than the available energy associated with
vertical motion. Use of the total available energy is advantageous here because
it gives the correct critical Richardson number, Ric = 1/4 [61], for the onset
of instability (in the present context, eddy events). Another distinction from
[53] is that the procedure that was used previously to suppress occasional
unphysically large eddy events is omitted here. For ODTLES implementa-
tion, a bound on eddy sizes follows from consideration, in Sect. 6.2, of the
complementary roles of steps 1 and 2 of the advancement cycle.

5.2 Numerical Implementation of Eddy Sampling

The unsteadiness of the rate distribution λ suggests the need to reconstruct
this distribution continually as the flow state evolves. This prohibitively costly
procedure is avoided by an application of the rejection method [62], involving
eddy sampling based on an arbitrary sampling distribution that is designed to
over-sample all eddies. True rates are computed only for sampled eddies, and
are used to determine eddy acceptance probabilities. The resulting procedure
adequately approximates the desired sampling from λ [32], and is exact in the
limit of infinite over-sampling. The choice of the arbitrary sampling distribu-
tion affects the efficiency of the sampling procedure, but not the statistics of
the eddies that are selected for implementation.

This implies modification of the split-operator cycling during 1D advance-
ment that is outlined at the end of Sect. 3.2. Denoting the arbitrary joint
PDF used to sample z0 and l values as h(z0, l), and choosing a sufficiently
small eddy-sampling time-step Δts, the advancement cycle during step 1 of
the overall advancement (Sect. 3.3) is

1. Advance the concurrent processes such as viscous transport (Sect. 3.3) for
a time interval Δts.

2. Sample z0 and l values from h(z0, l).
3. For these values, compute λ(z0, l) based on the current flow state.
4. Compute the ratio P of the rate λ(z0, l) of occurrence of an eddy with these

z0 and l values as given by the model to the rate h(z0, l)/Δts resulting
from the sampling procedure.

5. Implement the selected eddy with probability P based on a Bernoulli trial,
i.e. implement the eddy if P = λ(z0, l)Δts/h(z0, l) is larger than a random
variable sampled from the uniform distribution over [0, 1].

Δts must be assigned a value small enough so that P never exceeds unity. For
numerical accuracy, P � 1 should be obeyed with at most rare exceptions.
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For an evolving flow, it is efficient to adjust Δts during advancement in order
to direct the P values towards a target range, typically of order 0.01.

There is a theoretical advantage to sampling Δts values so that eddy-
sampling occurrences obey Poisson statistics. The rejection procedure then
corresponds to the thinning algorithm for generating nonstationary Poisson
processes [63]. This approach has been used in recent ODT simulations.

5.3 Planar Free-Shear Flows

The ODT representation of a time-developing Kelvin–Helmholtz instability,
illustrated in Fig. 6, indicates some of the flow features captured by the model.
This illustration is based on the ODT formulation of [53], which includes
the large-eddy suppression procedure that is needed for stand-alone ODT
simulation of unbounded flows (Sect. 5.1).

The rendering shows that the width of the active mixing zone grows pri-
marily by the relatively infrequent occurrence of a large event extending be-
yond the current range of the mixing zone, with some additional contribution
by the more numerous small events. This process is consistent with the domi-
nant role of large engulfing motions and the secondary role of small-scale nib-
bling in turbulent entraining flows under neutral buoyancy conditions. (The
effect of density stratification on the ODT representation of turbulent entrain-
ment has been investigated [32, 54].)

Bunching of events, especially after the occurrence of a large event, re-
flects the interactions between the eddy events and the evolving velocity pro-
file that induce the model analogue of the turbulent cascade. Each eddy event
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Fig. 6. Graphical representation of the sequence of eddy events during a simulated
ODT realization of a time-developing Kelvin–Helmholtz instability (left panel) and
a time-developing planar wake (right panel) [53]. The Kelvin–Helmholtz and wake
simulations are initialized using step-function and top-hat initial velocity profiles,
respectively. The space and time units in this illustration are arbitrary. In the plots,
each eddy is represented by an error bar whose vertical span corresponds to the
eddy range [z0, z0 + l], and whose horizontal location corresponds to the time of
eddy occurrence
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compresses and folds the velocity profile within the range of the event. This
increases the local shear that contributes to mechanical turbulence produc-
tion in the relation (13) governing the frequency of subsequent events within
that range. (In stratified flows, the buoyant production is also affected.) A
feedback process is thus induced that promotes the occurrence of successively
smaller events. Eventually, velocity fluctuation length scales are reduced suf-
ficiently so that damping of the fluctuations by concurrent viscous transport
dominates the production of fluctuations by eddy events. Viscous damping
thus terminates the local burst of eddy activity.

A planar wake simulation is also shown in Fig. 6. In the Kelvin–Helmholtz
simulation, vigorous turbulence, indicated by the number and size range of
eddies as the flow evolves, is sustained by the shear imposed on the flow
by the free-stream conditions (far-field velocity difference). The wake, how-
ever, evolves in a uniform background. As the initial velocity perturbation is
dispersed by eddies and dissipated by concurrent viscous evolution, the tur-
bulence intensity decreases, affecting the eddy frequency and size range and
slowing the growth of the turbulent zone. These qualitative impressions are
supported by the quantitative consistency of ODT simulation statistics with
the known similarity scalings for these flows [53].

5.4 Proposed Compressible Formulation

The main modifications of the Boussinesq ODT formulation that are required
in order to incorporate compressible gas dynamics are:

1. During 1D advancement, the w velocity now advects all properties, so
introduce a w∂z term on the left-hand side of (2–4) and in the additional
evolution equations mentioned below (item 4).

2. Adopt the general variable-density formulation of [54], which generalizes
the momentum equations (2–4) and the energy-redistribution step during
eddy implementation.

3. In the w equation, introduce a pressure-gradient (dp/dz) term.
4. Introduce 1D continuity and energy equations, and an equation of state

(e.g. ideal gas) that determines the pressure locally (in each wafer) from
density, temperature and composition (for multi-species mixtures).

5. Generalize the potential-energy contribution in (13) to reflect the equiva-
lence of the gravitational body force and dw/dt acceleration.

6. Generalize the viscous stress terms in (2–4) to compressible form, intro-
ducing (manageable) complications that are not elaborated here.

This scheme introduces acoustic time scales, which are very short relative
to other time scales at low Ma. As in other low-Ma compressible simulations,
a pseudo-compressible scheme based on an artificially low sound speed [1] can
improve the efficiency of this formulation at low Ma.

A poorly understood feature of compressible turbulence is the coupling of
acoustic and vortical motions. Because w is an advecting velocity rather than
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an auxiliary variable in the proposed compressible formulation, the triplet
map introduces such a coupling. For example, if the property profile in Fig. 5
is taken to be the w profile, then in this instance the map, representing vortical
motion, converts a pure expansion into an alternating expansion–compression–
expansion, i.e. an acoustic source. Given the limited state of understanding of
vortical-acoustic coupling in compressible turbulence, it is difficult to ascertain
whether this is a good representation of this coupling.

This question is best addressed by implementing the proposed formula-
tion and evaluating its predictive capabilities. Unlike incompressible ODT
(Sect. 5.1), this compressible formulation is not intended for use as a stand-
alone model. Its incorporation into 3D ODTLES is now considered.

6 ODTLES

6.1 Features

For implementation within ODTLES, an important feature of the formulation
of Sect. 5.4 is the distinguished role of w in the z solution (and likewise of u
and v in the x and y solutions respectively). Here it is convenient to introduce
the alternate notation vj,k denoting velocity component j in solution k. The
component vi,i now advects properties in solution i, but for j �= i, components
vj,i are auxiliary variables in solution i, as in Sect. 5.1. In addition to their
usual role in determining the eddy sampling rate, these components, like all
other flow properties, are fluxed through CV faces, thus prescribing inter-
domain transfers of these velocity components in the j �= i flow solutions
(step 2 of the advancement cycle; see Sect. 3.3). In this manner they influence
the evolution of the advecting components vj,j in the j �= i solutions.

This highlights the multi-faceted relationships among the three velocity
components, the three flow solutions, and the two steps of the advancement
cycle. A related consideration is the manner in which the simulated evolution
communicates pressure effects in 3D. If the pressure is locally high in one of
the solutions, it is likely to be high in the same vicinity in the other solutions
because they are all subject to the same fluxes at CV face locations (enforced
by advancement step 2). Then step-1 (1D compressible) advancement in each
solution will generate flow directed away from this vicinity in one coordinate
direction. Step 2 will then communicate these outward-directed flows among
the solutions so as to yield an approximate representation of radial outflow
from the high-pressure region in all the solutions.

Step 2 transfers properties over a distance unity, rather than the 1D res-
olution scale 1/m, using first differences. This is a diffusive representation of
fluxes that are primarily advective, and therefore induces numerical dissipa-
tion of kinetic energy. Conservation of total energy, which is obeyed exactly,
implies conversion of the lost kinetic energy into heat. For conventional eddy-
diffusivity closure, incorporation of a sub-grid energy evolution equation can
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recast this dissipation as conversion of mesh-resolved kinetic energy into sub-
grid kinetic energy, with subsequent conversion to heat by viscous dissipation.
The analogous mechanism in ODT is the use of the kernel operation to deposit
the numerically dissipated energy into the velocity fields. Using the method
of [54], this can be done in conformance with momentum conservation for
variable-density flows. To distinguish numerically dissipated energy from true
viscous dissipation, separate accounting of advective and viscous fluxes across
CV faces is needed. This can be done by straightforward generalization of the
procedure used in [53] to variable-density flow.

Because step 2 involves diffusive representation of advective transport,
it is subject to some of the same limitations as parameterizations in which
the representation of advective transport below 3D mesh-resolved scales is
solely diffusive. Nevertheless, owing to the 1D subcycling during step 1, salient
characteristics of the small scale flow structure are preserved, as has been
demonstrated using the formulation described in Sect. 6.3 [21]. Splicing is
a different method for implementing step-2 property transfers that is not
diffusive in character, but is subject to other limitations, as noted in Sect. 2.5.

Because step 2 of the advancement cycle applies fluxes to a given flow
solution that are interpolants of fluxes in a different flow solution, it is math-
ematically possible to violate realizability. Namely, it is possible to flux more
of a non-negative quantity such as mass out of a wafer than it contains. This
establishes a CFL-type constraint on the time step Δt. The allowed magni-
tude of Δt is of the same order for ODT closure as for eddy-diffusivity closure
in which there is no spatial refinement below the CV scale, though for ODT
the constraint is slightly more restrictive due to stochastic variability. Use of a
small value of Δt incurs no significant cost penalty because the 1D subcycling
using smaller time steps is the most costly part of the computation.

As noted in Sect. 3.3, Gauss’ theorem constrains the evolution of the three
distinct solutions. For each flow solution, it implies that the change of the CV
integral of a conserved property during one advancement cycle is equal to the
sum of the transfers of those properties through CV faces. The flux across
each face is operationally defined as the corresponding face transfer divided
by the time step Δt. (Recall that the face area is unity in scaled units.) This
identity motivates a definition of mesh-scale output statistics that conserves
the property exactly. Consider total CV mass, denoted ρ̄ because the scaled
volume is unity. Gauss’s theorem implies that the quantities ρ̄ and the face
fluxes of mass, i.e. momenta 〈ρv〉face (where v is the face-normal velocity),
form a conservative set of output variables. An additional assumption or def-
inition is needed to define the mesh-scale face velocity V . A natural choice is
〈ρv〉face ≡ 〈ρ〉V , where 〈ρ〉 is an interpolant of the ρ̄ array evaluated at the
face centre at the midpoint Δt/2 of the advancement cycle (corresponding to
the midpoint of the time integration that determines mass transfers across
faces).

An output protocol of this sort is needed because the 3D conservation
laws are applicable only to CVs and only with reference to state changes from
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the beginning to the end of the advancement cycle. Analogous considerations
arise in conventional advancement schemes.

Discrete and continuum definitions of the triplet map are provided in
Sects. 4.2 and 5.1 respectively, where the former is applicable in the Eulerian
uniform-mesh (Sect. 3.1) implementation described thus far. In ongoing work,
an alternative Lagrangian-mesh ODT implementation has been developed in
which wafer faces are advected by the w velocity (if the flow is compressible)
and by triplet maps. Here, the continuum map definition is used, resulting
in tripling of the number of wafer faces within the mapped interval. A mesh-
management scheme is used to suppress the excessive proliferation of wafers.
This formulation will be particularly advantageous for wall-bounded flows in
which high spatial resolution is needed only in near-wall regions, as in the
applications discussed in Sect. 7.

6.2 Parameter Assignment

The model parameters C and Z are introduced in the formulation of eddy
sampling in Sect. 5.1. C scales the eddy event rate, and hence the simulated
turbulence intensity, for a given flow configuration. The role of Z is to impose
a threshold eddy Reynolds number that must be exceeded to allow eddy oc-
currence [47]. In near-wall flow, the transition from the viscous layer to the
buffer layer is sensitive to this threshold and hence to Z [64]. For Z>0, eddies
are suppressed entirely when local values of the eddy Reynolds number are
sufficiently small. The circumstances under which this occurs in ODTLES are
considered. This question is closely tied to the upper bound on the range of
allowed eddy sizes l.

As noted in Sect. 6.1, the 3D character of the flow is captured above the CV
scale by step 2 of the advancement cycle. Therefore it would be redundant to
allow l values greatly exceeding unity. Likewise, the bound on l should not be
much less than unity, because this would omit representation of eddies larger
than the bound but smaller than unity. The signature of either of these arte-
facts would be apparent in the 1D energy spectrum, which can be extracted
from ODT simulations [21, 32, 35]. Examination of energy spectra from sim-
ulations of representative flows therefore allows empirical determination of a
bound on l.

As noted, the bound will be of order unity. Therefore the largest Reynolds
number of a 1D eddy event that will occur is of the order of the Reynolds
number of the largest eddy that is not resolved at the CV scale. If the mesh is
increasingly refined (decreasing CV size in physical units) for a given flow con-
figuration, then the Reynolds number of the largest unresolved eddy decreases
until it is below the threshold value corresponding to the assigned value of Z.
At this mesh refinement, eddies are entirely suppressed during 1D subcycling,
so no fine structure is generated and additional 1D refinement below the CV
scale (i.e. m 
 1) becomes superfluous. At this point, the role of physical
modelling is eliminated and the ODTLES simulation reduces to DNS. This
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and the considerations of Sect. 3.4 highlight the nature of the assumptions
and approximations on which ODTLES is based.

6.3 Comparison Case: Incompressible Formulation

An incompressible analogue of the formulation of Sect. 6.1 has been developed
and applied to homogeneous decaying turbulence [21]. The main differences
between the two formulations are summarized.

Because the incompressible formulation precludes dilatational flow, conti-
nuity must be enforced on a time-accurate basis. Therefore a two-step advance-
ment cycle, with similarities to that described in Sect. 3.3, is implemented.
However, in step one ODT lines are fully coupled through the introduction
of additional transport terms that account for LES-scale multi-dimensional
momentum transport. Also, each 1D domain evolves only the two velocity
components vj,k for j �= k. The j = k component that advects fluid in the
compressible formulation is omitted. Instead, fluid is advected along the 1D
domain by a separately defined ‘advecting velocity’ that is determined by
continuity (here, the solenoidal condition), based on ‘fluxing velocities’ that
govern inter-domain transfers (the analogue of step 2 in Sect. 3.3). The fluxing
velocities are moving averages, in time, of the velocity components evolved on
the 1D domain. (This is an incomplete description because it omits consider-
ation of the staggered mesh on which the simulation is implemented, and its
algorithmic implications.)

In step two of the overall advancement cycle, a pressure projection is
performed to enforce continuity of the mesh-scale filtered velocity field. The
resulting velocity corrections are passed down to the 1D level using an adjust-
ment scheme involving a momentum-conserving interpolant of the mesh-scale
corrections. The interpolant is slightly dissipative, but this can be corrected
where it degrades the flow solution using the kernel operation, as in Sect. 6.1.

It seems likely that this and the compressible formulation will exhibit com-
parable performance for flow regimes to which both can be applied, but this
remains to be demonstrated. Computational costs are also likely to be com-
parable. Other perspectives on ODT-based 3D simulation of incompressible
turbulent flow are provided in [34] and [65].

7 Illustrative ODT Applications

7.1 Rayleigh Convection

Rayleigh convection is a suitable initial application for compressible ODTLES.
Here, previously reported results for this flow [51] obtained using the Boussi-
nesq ODT formulation of Sect. 5.1 are summarized in order to illustrate the
performance of ODT and the additional predictive capability that might be
provided by compressible ODTLES.
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The ODT formulation used to simulate Rayleigh convection was simpler
than that of Sect. 5.1 in that one instead of three velocity components was
evolved. An even simpler ODT-type formulation was previously used to sim-
ulate this flow [32]. Termed ‘density profile evolution’ (DPE), it evolves only
density or a density surrogate (temperature), but no velocity components.
Equation (13) indicates that in a gravitationally unstable state, gravitational
potential energy, in the absence of fluid motion, is sufficient to generate eddy
motion, consistent with the physical occurrence of spontaneous onset of mo-
tion under such conditions (e.g. the Rayleigh–Taylor instability, which has also
been simulated using DPE [32]). Other buoyant-stratified-flow applications of
both DPE [48] and one-component ODT [13, 49, 50] have been reported.

The ODT representation of Rayleigh convection corresponds to the ideal
configuration of horizontally homogeneous flow between horizontal plates of
infinite extent, but computed results are compared to measurements in convec-
tion cells that are necessarily laterally bounded. The dimensional parameters
governing this flow are plate separation, buoyant forcing, viscosity ν and ther-
mal conductivity κ. They are grouped into two nondimensional parameters,
the Rayleigh number Ra, which quantifies the strength of the gravitational in-
stability, and the Prandtl number Pr = ν/κ, a fluid property that controls the
relative thicknesses of the near-wall viscous and thermal layers. At high Ra,
the thin near-wall layers strongly influence flow dynamics, as demonstrated
by the significant observed Pr dependence of flow structure [66]. ODT is an
efficient method for resolving these thin layers.

In Fig. 7, an instantaneous density profile from an ODT simulation of
Rayleigh convection highlights the analogies between the model and physical
processes in the flow. Large localized deviations from the time-averaged profile
are the signatures of map-induced displacements of near-wall fluid into the

[ρ(z)-ρ(0)] / [ρ(H)-ρ(0)]

z/
H

0 1

0.5

1

Fig. 7. Instantaneous (thin line) and time-averaged (thick line) vertical profiles
of normalized density from an ODT simulation of Rayleigh convection for Ra =
1.4 × 109 and Pr = 0.7
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bulk flow region. Though these displacements do not capture the persistence
in time of buoyant plumes, they emulate the mechanism of entrainment of
near-wall fluid into the bulk flow. Smaller eddy events subdivide and compress
entrained parcels (upper region of the profile). In conjunction with molecular
transport, this leads to smoothing of the fluctuations (e.g. smooth regions
in the central and lower regions of the profile that deviate from the time
average). Over time, these processes communicate wall forcings to the centre
plane, as indicated by the nonzero density gradient at the centre of the profile.
Using ODT, these flow mechanisms have been quantitatively characterized
[51], which in turn has motivated another innovative modelling approach [67].

The behaviour of greatest interest is the dependence of the turbulent en-
hancement of mean heat flux, denoted Nusselt number (Nu), on Ra and Pr.
A choice of the model parameters C and Z is identified that yields good
agreement with measured Nu values over a wide range of Ra and Pr values.
Without further parameter adjustment, ODT yields accurate predictions of
centre-plane fluctuations, including PDFs of velocity and temperature [51].

Comparison of near-wall simulated PDFs with measurements [68] indicates
large discrepancies that may reflect the inability of ODT to capture the ‘wind,’
a symmetry-breaking large scale circulation [69]. Given the good performance
of the model in other respects, an ODTLES formulation that incorporates 3D
boundary conditions and emulates 3D large scale motions might reproduce the
wind and its influence on fluctuation statistics. This will be a useful initial test
of the compressible formulation, both because conventional methods cannot
affordably capture the relevant small scale near-wall phenomena and because
copious experimental data, exhibiting nontrivial parameter dependencies, are
available.

The confinement of influential small scale phenomena to the near-wall
region implies a strong preference for the Lagrangian numerical scheme, which
by construction provides high resolution only where needed. It can therefore be
anticipated that this application will be no more costly computationally than a
previously demonstrated near-wall ODT closure for confined flows (Sect. 7.2),
which was used to simulate high-Re channel flow on a single processor [64].

7.2 Channel Flow

Channel flow corresponds to the same geometry as idealized Rayleigh convec-
tion, i.e. flow between parallel plates with no-slip boundary conditions, but
the flow is forced by a pressure gradient parallel to the plates rather than
gravitation normal to the plates. Like Rayleigh convection, channel flow re-
laxes to a statistically steady state. It is a canonical test case for conventional
LES [70, 71].

To address the near-wall closure difficulties described in Sect. 2.1, an
ODT-based near-wall sub-grid closure for LES was implemented and applied
to channel flow [64]. The closure is similar in structure to, and in fact was the
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precursor of, the formulation described in Sect. 6.3. In this regard, it might
appear that the full-flow closure is superfluous away from the near-wall region.
(As in Rayleigh convection, small scale motion and transport are dispropor-
tionately influential in the near-wall region.) For channel flow specifically, this
may be correct, but the compressible formulation with Lagrangian 1D imple-
mentation may be comparable in cost, as is expected for Rayleigh convection.
Moreover, the near-wall closure involves potentially problematic parameteri-
zation in the region of transition between the ODT near-wall treatment and
conventional closure in the bulk flow.

As in the application to Rayleigh convection, ODT parameters were ad-
justed to match a mean flow property, in this case, the mean velocity profile.
Here, Z controls the height of the transition from the viscous to the buffer
region. The LES with ODT sub-grid closure reproduced the friction law and
wall-normal profiles of velocity fluctuations with good accuracy. Stand-alone
ODT yielded less accurate near-wall fluctuation statistics, indicating the need
for a 3D bulk-flow representation in order to represent accurately the bulk
forcing that drives near-wall fluctuations. It is anticipated (Sect. 7.1) that
ODTLES may likewise capture the wind effect in Rayleigh convection, yield-
ing comparable performance improvements relative to stand-alone ODT.

8 Discussion

High-fidelity simulation of turbulent flows and their interaction with other
processes ultimately requires local (in space and time) resolution of all rele-
vant processes. Because this is unaffordable in 3D DNS, a modelling strategy
involving resolution of small scales in 1D is proposed. The drawbacks of two-
way information transfer between resolved and coarse-grained treatments sug-
gests that an all-scale 1D formulation should be adopted, with large scale 3D
motion captured through suitable couplings within and among arrays of 1D
domains rather than through a separate coarse-grained treatment. A proposed
formulation within this ‘autonomous microstructure evolution’ paradigm has
been outlined. The underlying 1D methodology, ‘one-dimensional turbulence’,
has been described, with emphasis on the gain in fidelity when a resolved 1D
representation of relevant flow phenomenology is introduced.

Representation of turbulent fluid motion in 1D is enabled by generalization
of the usual mathematical representation of advection through the introduc-
tion of a map-based representation. It is noted that this concept is not specific
to 1D, and has potentially useful 3D applications.

Although the specific 3D turbulence simulation method outlined here has
not yet been implemented or demonstrated, steps in its development that
are indicative of its ultimate form and performance have been described. An
analogue of this engineering-focused approach that is under development by
the atmospheric science community has been noted. The potential for fruitful
cross-fertilization of ideas across disciplines is plainly evident.
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G-equation, 269
p-mode, 67
q-statistics, 36–39, 42
4/5-law, 232

absolute temperature, 186
additive, 29
Alfvén wave, 233

Alfvén effect, 234, 243
collision, 228, 233, 234

alignment, 234
anisotropy, 233, 235
Archimedian production, 276
artificial viscosity, 73
atmospheric boundary layer, 295, 299
autonomous microstructure evolution,

291, 292, 294, 297, 299, 300, 302,
305, 309

average
ensemble, 15
flux, mass flux, 15
volume, 15

backscatter, 294
BBGKY hierarchy, 3
Bernoulli trial, 321
Biot–Savart equation, 293
Boltzmann equation, 3
Boltzmann-Gibbs

entropy, 25
statistical mechanics, 25

bottleneck effect, 239
boundary-layer approximation, 178

Boussinesq approximation, 316, 319,
327

buoyancy-driven flow, 295, 316
Burgers equation, 306

cascade, 226, 230
cell Reynolds number, 72
channel flow, 329
chemically reacting flow, 295
Clausius, 24
clipping operation, 180, 204
closure assumptions, 167
combustion, 299, 300, 313, 315, 316
compressibility effects, 141
compressible turbulence, 295
conservative, 30
conserved quantities, 5
continuity equation, 5, 51
convective boundary layer, 172, 174,

175, 180, 181, 207
convective mass flux, 193
COSMO model, 178, 180
critical balance, 235
cross helicity, 226, 227
crossover statistics, 35

Deardorff convective scaling, 116, 181
decay

rates of (ideal invariants), 226
selective, 226

deep convection, 149, 163, 189, 191,
203, 209

deep water, 144
deflagration, 259
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departure-from-isotropy tensor, 169,
177

detailed conservation, 226
detonation, 259
detrainment rate, 191
dilatational flow, 306, 309, 327
direct numerical simulation, 295–297,

326, 330
direct numerical simulations, 13, 72
dispersive, 76
dissipation, 110, 123, 151

rate, 116
rate equation, 127
region, 154
tidal, 146
time scales, 142

dissipation range, 231
dissipation rates, 167, 175, 178
dissipation scale, 9, 233, 295
dissipative, 30, 76, 110
distributed burning regime, 264
down-gradient approximation, 135, 165,

171
dry static energy, 190
dynamic alignment, 227

ECMWF IFS, 179, 190, 191
eddy, 110, 114, 307, 308
eddy diffusivity, 305, 312, 313, 315
eddy turnover time, 232
eddy viscosity, 294, 305
eddy-viscosity, 275
EDQNM closure theory, 227, 241
effective Prandtl number, 79
effective Reynolds number, 78
effective viscosity, 78
Elsässer variables, 228, 233
energy decay

hydrodynamic, 227
magnetohydrodynamic, 228
self-similar, 227

energy dissipation rate, 225
energy equation, 7, 52
energy spectrum

Heisenberg-Kolmogorov (HK), 111
ensemble average, 224
enstrophy, 228
entrainment, 60, 96, 136, 322
entrainment rate, 139, 191

entropy functional, 24
entropy production, 30
ergodic, 22, 23
ergodicity, 225
Euler equation, 6
extended self-similarity, 245
extensive, 28

Favre filtered, 272
finite-volume discretization, 309
fire polishing scale, 261
flamelet regime, 263
flow

incompressible, 108
fluctuations, 37
fluid

ideal, 6
incompressible, 8

fractional-step method, 304
free shear flow, 299, 322

Gamma distribution, 40
general circulation model, 299, 300
Germano consistent decomposition, 274
Gibson scale, 263
global Correlations, 29
GME, 179
graining, 22
gravity waves, 96, 118, 144

HIRLAM, 178
homogeneity, 9
hub, 23
Hugoniot curve, 258

ideal invariants, 226, 230
ruggedness, 226

incompressibility, 224
independent, 29
inertial range, 9, 231
inertial sub-range, 294, 314, 315
integral length scale, 225, 229
intensive, 29
intermediate mass elements, 256
intermittency, 11, 231, 244, 294, 320

correction, 245
Log-Poisson model, 246
of dissipative structures, 245
refined similarity hypothesis, 245
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interstellar medium, 227
isotropy, 9

Kelvin’s circulation theorem, 226
Kelvin–Helmholtz instability, 322
Kelvin-Helmholtz instability, 261
kinetic helicity, 226
Kolmogorov’s

assumptions, 10
scaling law, 9
third hypothesis, 11

Lagrange parameter, 36
laminar flame speed, 260
Landau-Darrieus instability, 261
large eddy simulations, 73, 111
large-eddy simulation, 161, 294–296
lattice Boltzmann model, 293, 297
lattice-gas hydrodynamics, 292, 293,

305
level-set technique, 269
Lewis number, 260
limit

asymptotic, 22
thermodynamic, 22

Liouville equation, 2
liquid water potential temperature, 174,

185, 203
liquid water specific humidity, 186, 188
log-normal model, 11
log-normal superstatistics, 42
logistic map, 33
Loitsianskii integral, 227, 228
long-range interactions, 29
Lyapunov exponent, 33

Mach number, 292, 323
macroturbulence, 66
magnetic field

effects on heat transport, 141
force-free, 227
frozen-in, 226
knottedness, 226
linkage, 226
mean, 238
reconnection, 226

magnetic helicity, 226, 228
magnetic Prandtl number, 224
magnetic vector potential, 226

magneto-hydrodynamics (MHD), 53
mass-flux approximation, 190
mass-flux convection scheme, 189, 190
Maxwell-Boltzmann equation, 5
Mellor-Yamada closures, 177, 208
microturbulence, 66
Millionshchikov hypothesis, 172, 205
Millionshchikov hypothesis, generalised,

174, 205
mixing length theory (MLT), 113
mixing-length theory, 320
molecular clouds, 227
Monin-Obukhov similarity theory, 181,

182
multiphase flow, 295

Navier–Stokes equation, 292
Navier-Stokes equation, 6, 51
non-linear interaction, 109
nonadditive, 26
nonextensive, 28
nonextensive statistics, 42
nonlinear interaction

local, 230
non-local, 242

nuclear fusion, 223
numerical weather prediction, 161–164,

171, 178, 189, 190, 207
Nusselt number, 329

Obukhov length, 183
ODTLES, 300, 316, 320, 321, 324, 327,

330
one-dimensional turbulence, 291, 302,

315–317, 320, 322, 323, 327, 329
one-equation turbulence model, 178
organised detrainment, 191
organised entrainment, 191
orographic drag, 162
overshooting (OV), 58, 117

Péclet number, 315
partition, 32
phase space, 22
phenomenology

Goldreich-Sridhar (GS), 235
Iroshnikov-Kraichnan (IK), 228, 233
Kolmogorov (K41), 231, 232
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planetary boundary layer, 161, 163, 176,
183, 185, 207

planetary boundary layer (PBL), 116,
128

plumes, 135
Poisson process, 313, 320
potential temperature, 166, 182, 186
potential-temperature skewness, 173
Prandtl number, 260, 328

turbulent, 118, 142
pressure gradient-temperature covari-

ance, 168
pressure redistribution, 168
pressure transport, 171
pressure-scalar covariances, 167, 178
pressure-velocity covariances, 167, 178
probability distribution function, 173,

187, 188, 202, 205, 206
pseudo-compressible algorithm, 292,

323

radiation hydrodynamics (RHD), 52
radiative conductivity, 52
Rayleigh convection, 309, 317, 327–330
Rayleigh criterion, 258
Rayleigh number, 62, 328
Rayleigh–Taylor instability, 328
Rayleigh-Taylor instability, 9, 261
realisability, 168, 170, 175, 180, 206
rejection method, 321
relaxation, 71
residual energy, 240
Reynolds number, 9, 110, 149, 294, 315,

326
Reynolds numbers, 224, 236, 262
Reynolds stress, 113, 166
Reynolds-averaged Navier–Stokes

models, 305
Richardson cascade, 232
Richardson number, 118
Rotta return-to-isotropy parameterisa-

tion, 168
roughness length, 183

scalar flux, 166
scalar flux, mass-flux approximation,

200
scalar variance, 166, 204, 207

scalar variance, mass-flux approxima-
tion, 195

second order moments, 127
second-order moments, 141
selective decay, 228
sensitivity to the initial conditions, 42
SGS cloud scheme, 188, 189, 203
SGS turbulence stress tensor, 275
shallow convection, 163, 185, 189
shallow water, 145
short-range interactions, 28
similarity hypothesis, 232
smoothed particle hydrodynamics, 292
solenoidal flow, 292, 306–309, 312, 327
specific humidity, 166, 182, 190
spectral statistics, 39
stably stratified boundary layer, 179,

182, 185
statistical homogeneity, 225
statistical isotropy, 225
stochastic differential equations, 293,

305
stream function, 306
structure function, 231
structure functions, 10
sub-filter scale, 162, 165
sub-grid scale, 162, 163, 165, 180, 194
sub-grid-scale model, 271
superparameterization, 297, 301
superstatistics, 35
surface tension, 295
symmetry, 22

Taylor-Couette flow, 41
test filter, 275
thermodynamical energies, 29
thin reaction zone, 263
third-order moments, 128, 165, 171,

180, 193, 205
three-delta-function mass-flux frame-

work, 190, 193, 195
total energy, 225, 226
total water specific humidity, 174, 185,

189, 203
triad interaction, 226, 230, 242
truncated closure, 177, 179, 180, 184,

205
turbulence, 21, 26, 35, 38, 39, 42,

107–110, 135
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fully developed, 49
coherent structures in, 49
energy spectrum of, 232
freely decaying, 152
fully developed, 229
homogeneous, 225
source of, 117
universality of, 223

turbulence kinetic energy, 162, 167, 180,
185, 201, 203, 207

turbulence potential energy, 207
turbulence stress tensor, 273
turbulent cascade, 294, 308, 314
turbulent detrainment rate, 191, 201
turbulent dynamo, 224, 226, 231, 243
turbulent entrainment rate, 191, 201
turbulent flame speed, 264
turbulent heat flux, 113, 127, 142
turbulent kinetic energy, 127

flux of, 114
two-delta-function mass-flux framework,

173, 189, 192, 193, 195, 203
two-equation turbulence model, 178
two-point statistics, 224

type Ia supernovae, 255

unified turbulence-shallow convection
scheme, 202, 206

vertical-velocity skewness, 173, 194
vertical-velocity variance, mass-flux

approximation, 196
virtual potential temperature, 167, 181,

186
viscosity, 6

bulk, 7, 52
kinematic, 8, 52, 149
molecular, 7, 52, 110
tensor, 6, 51
turbulent, 63, 107, 108

viscous stress, 323
Vlasov equation, 3
vortex dynamics, 293, 307

wall boundary layers, 295, 328, 329
white dwarf, 255, 267

zero Lebesgue measure, 23
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